Solveeit Logo

Question

Question: A hot body, obeying Newton’s law of cooling is cooling down from its peak value \({{80}^{\circ }}C\)...

A hot body, obeying Newton’s law of cooling is cooling down from its peak value 80C{{80}^{\circ }}Cto an ambient temperature of 30C{{30}^{\circ }}C. It takes 5 minutes to cool down from 80C{{80}^{\circ }}Cto 40C{{40}^{\circ }}C. How much time will it take to cool down from 62C{{62}^{\circ }}Cto 32C{{32}^{\circ }}C? (Given ln2=0.693,ln5=1.609\ln 2=0.693,\ln 5=1.609)
A. 8.68.6 minutes
B. 6.56.5 minutes
C. 9.69.6 minutes
D. 3.753.75 minutes

Explanation

Solution

We have been given two cases of different temperature ranges in which the temperature of the body is changing. In one of them the time span is also mentioned but what we must see is that the value of the constant used in the equation of Newton’s law of cooling is missing. Hence, we shall first find the value of this constant and then proceed further to calculate the time taken in the second temperature range.

Complete step-by-step solution:
According to Newton’s law of cooling;
T(t)=Tf+(TiTf)ektT\left( t \right)={{T}_{f}}+\left( {{T}_{i}}-{{T}_{f}} \right){{e}^{-kt}} ……………………. Equation (1)
Where,
T(t)=T\left( t \right)= temperature of body at time tt
Tf={{T}_{f}}= final temperature of the body
Ti={{T}_{i}}= initial temperature of the body
t=t= time taken
k=k= positive constant of Newton’s law of cooling

In the first case,
We have T(t)=40, Tf=30, Ti=80, t=5T\left( t \right)={{40}^{\circ }},\text{ }{{T}_{f}}={{30}^{\circ }},\text{ }{{T}_{i}}={{80}^{\circ }},\text{ }t=5minutes.

Substituting these values in equation (1), we get
40=30+(8030)ek5 10=(50)e5k \begin{aligned} & \Rightarrow {{40}^{\circ }}={{30}^{\circ }}+\left( {{80}^{\circ }}-{{30}^{\circ }} \right){{e}^{-k5}} \\\ & \Rightarrow {{10}^{\circ }}=\left( {{50}^{\circ }} \right){{e}^{-5k}} \\\ \end{aligned}

Taking log on both sides,
ln10=ln(50)e5k\Rightarrow \ln 10=\ln \left( 50 \right){{e}^{-5k}}

Now using the logarithmic property, lnab=lna+lnb\ln ab=\ln a+\ln b and lnab=blna\ln {{a}^{b}}=b\ln a, we get
ln10=ln(50)+(5k)lne ln10=ln5+ln105k \begin{aligned} & \Rightarrow \ln 10=\ln \left( 50 \right)+\left( -5k \right)\ln e \\\ & \Rightarrow \ln 10=\ln 5+\ln 10-5k \\\ \end{aligned}
\left\\{ \because \ln e=1 \right\\}

Cancelling ln10\ln 10from both sides,
ln5=5k\Rightarrow \ln 5=5k
Also, given that ln5=1.609\ln 5=1.609,
5k=1.609 k=1.6095 k=0.3218 \begin{aligned} & \Rightarrow 5k=1.609 \\\ & \Rightarrow k=\dfrac{1.609}{5} \\\ & \Rightarrow k=0.3218 \\\ \end{aligned}

Now, in the second case,
We have T(t)=32, Tf=30, Ti=62, k=0.3218T\left( t \right)={{32}^{\circ }},\text{ }{{T}_{f}}={{30}^{\circ }},\text{ }{{T}_{i}}={{62}^{\circ }},\text{ }k=0.3218

Substituting these values in equation (1) to find time required for cooling, we get
32=30+(6230)e0.3218t 2=(32)e0.3218t 2=(25)e0.3218t \begin{aligned} & \Rightarrow {{32}^{\circ }}={{30}^{\circ }}+\left( {{62}^{\circ }}-{{30}^{\circ }} \right){{e}^{-0.3218t}} \\\ & \Rightarrow 2=\left( 32 \right){{e}^{-0.3218t}} \\\ & \Rightarrow 2=\left( {{2}^{5}} \right){{e}^{-0.3218t}} \\\ \end{aligned}
Taking log on both sides,
ln2=ln(25)e0.3218t\Rightarrow \ln 2=\ln \left( {{2}^{5}} \right){{e}^{-0.3218t}}

Again, using the logarithmic property, lnab=lna+lnb\ln ab=\ln a+\ln b and lnab=blna\ln {{a}^{b}}=b\ln a, we get
ln2=ln25+lne0.3218t ln2=5ln2+(0.3218t) \begin{aligned} & \Rightarrow \ln 2=\ln {{2}^{5}}+\ln {{e}^{-0.3218t}} \\\ & \Rightarrow \ln 2=5\ln 2+\left( -0.3218t \right) \\\ \end{aligned}
\left\\{ \because \ln e=1 \right\\}
0.3218t=4ln2\Rightarrow 0.3218t=4\ln 2

Given that ln2=0.693\ln 2=0.693, substituting this value,
0.3218t=4(0.693) t=4(0.693)0.3218 t=2.7720.3218 t=8.61 \begin{aligned} & \Rightarrow 0.3218t=4\left( 0.693 \right) \\\ & \Rightarrow t=\dfrac{4\left( 0.693 \right)}{0.3218} \\\ & \Rightarrow t=\dfrac{2.772}{0.3218} \\\ & \Rightarrow t=8.61 \\\ \end{aligned}

Therefore, the time taken by body to cool down from 62C{{62}^{\circ }}C to 32C{{32}^{\circ }}C is 8.618.61 minutes.

Therefore, the correct option is (A) 8.68.6 minutes.

Note:
Generally, when a body which is hotter or cooler than the ambient room temperature goes under a change in temperature when placed in a different surrounding. This is due to Newton’s law of cooling which conventionally states that the rate of change of temperature should be proportional to the difference between the temperature of the object and the ambient temperature.