Solveeit Logo

Question

Question: A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the cross...

A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the cross-sectional area is 10cm210{cm}^{2}, the water velocity is 1m/s1{m}/{s} and pressure is 2000Pa. The pressure of water at another point where cross-sectional area is 5cm25{cm}^{2}, is k×102Pak \times {10}^{2}Pa, the value of k is then
A. 700 Pa
B. 5
C. 600 Pa
D. 800 Pa

Explanation

Solution

To solve this problem, first we have to find the velocity of water at another end of the pipeline. So, to find the velocity at the other end, use the continuity equation. Substitute the values in the equation and find the velocity of water at another end. Then, use the equation for Bernoulli’s theorem. Substitute the given values and density of water as 1000kg/m31000 {kg}/{{m}^{3}} in the equation and find the value of k.

Formula used:
A1v1=A2v2{ A }_{ 1 }{ v }_{ 1 }={ A }_{ 2 }{ v }_{ 2 }
P1+12ρv12=P2+12ρv22{ P }_{ 1 }+\dfrac { 1 }{ 2 } \rho { v }_{ 1 }^{ 2 }={ P }_{ 2 }+\dfrac { 1 }{ 2 } \rho { v }_{ 2 }^{ 2 }

Complete step-by-step solution:
Let A1{A}_{1}, v1{v}_{1} and P1{P}_{1} be the cross-sectional area, water velocity and pressure respectively at one end of the pipeline.

A2{A}_{2}, v2{v}_{2} and P2{P}_{2} be the cross-sectional area, water velocity and pressure respectively at the other end of the pipeline.

Given:
A1=10cm2=0.001m2{A}_{1}= 10{cm}^{2}=0.001 {m}^{2}
A2=5cm2=0.0005m2{A}_{2}= 5{cm}^{2}=0.0005 {m}^{2}
v1=1m/s{v}_{1}= 1{m}/{s}
P1=2000Pa{P}_{1}=2000Pa
P2=k×102Pa{P}_{2}= k \times {10}^{2}Pa

According to continuity equation,
A1v1=A2v2{ A }_{ 1 }{ v }_{ 1 }={ A }_{ 2 }{ v }_{ 2 } …(1)

Substituting values in above equation we get,
0.001×1=0.0005×v20.001 \times 1=0.0005\times { v }_{ 2 }
v2=0.001×10.0005\Rightarrow { v }_{ 2 }=\dfrac { 0.001 \times 1 }{ 0.0005 }
v2=2m/s\Rightarrow {v}_{2}= 2{m}/{s}

According to Bernoulli’s theorem,
P1+12ρv12=P2+12ρv22{ P }_{ 1 }+\dfrac { 1 }{ 2 } \rho { v }_{ 1 }^{ 2 }={ P }_{ 2 }+\dfrac { 1 }{ 2 } \rho { v }_{ 2 }^{ 2 } …(2)

We know, the density of water is 1000kg/m31000 {kg}/{{m}^{3}}.
ρ=1000kg/m3\Rightarrow \rho= 1000 {kg}/{{m}^{3}}

Substituting values in the equation. (2) we get,
2000+12×1000×12=k×102+12×1000×222000+ \dfrac {1}{2} \times 1000 \times {1}^{2}= k \times {10}^{2}+ \dfrac {1}{2} \times 1000 \times {2}^{2}
2000+12×1000×1=k×102+12×1000×4\Rightarrow 2000+ \dfrac {1}{2} \times 1000 \times 1= k \times {10}^{2}+ \dfrac {1}{2} \times 1000 \times 4
2000+500=k×102+2000\Rightarrow 2000+ 500= k \times {10}^{2}+ 2000
2500=k×100+2000\Rightarrow 2500= k \times 100+ 2000
25002000=k×100\Rightarrow 2500-2000= k \times 100
k=500100\Rightarrow k= \dfrac {500}{100}
k=5\Rightarrow k= 5

Thus, the value of k is 5.

So, the correct answer is option B i.e. 5.

Note:
To solve these types of problems, students must be familiar with the continuity equation and Bernoulli's theorem. Here, we had to convert to units of cross-sectional area. So, students must take care of the conversion units. Not converting the units of the quantities to their SI units may lead them to a wrong answer.