Solveeit Logo

Question

Physics Question on laws of motion

A horizontal disk is rotating with angular velocity ω\omega about a vertical axis passing through its centre. A ball is placed at the centre of groove and pushed slightly. The velocity of the ball when it comes out of the groove-

A

32ωR\frac{\sqrt{3}}{2}\omega R

B

ωR2\frac{\omega R}{2}

C

ωR\omega R

D

ωR2\frac{\omega R}{\sqrt{2}}

Answer

32ωR\frac{\sqrt{3}}{2}\omega R

Explanation

Solution

Let us consider the motion of the ball with respect to disk Netforcealonggroove=mω2rsinθNet \, force \, along \, groove=m\omega ^{2}r \, sin \theta =mω2rxr=m\omega ^{2}r \, \frac{x}{r} =mω2x=m\omega ^{2}x ma=mω2x\therefore \, ma=m\omega ^{2}x vdvdx=ω2x\Rightarrow \, v \, \frac{d v}{d x}=\omega ^{2}x 0vvdv=0R/2ω2xdx\Rightarrow \displaystyle \int _{0}^{v}vdv=\displaystyle \int _{0}^{R/2}\omega ^{2}xdx v22=(ω)22(R2)2\Rightarrow \frac{v^{2}}{2}=\frac{\left(\omega \right)^{2}}{2}\left(\frac{R}{2}\right)^{2} v=ωR2\Rightarrow \, v=\frac{\omega R}{2} vBall,Ground=vBall,Disk+vDisk,Ground\overset{ \rightarrow }{v}_{B a l l , G r o u n d}=\overset{ \rightarrow }{v}_{B a l l , D i s k}+ \, \overset{ \rightarrow }{v}_{Disk , G r o u n d} vBall,Ground\therefore \, \left|\overset{ \rightarrow }{v}_{Ball , Ground}\right| = \, \left(\left\\{\left(\omega R\right)^{2} + \left(\frac{\omega R}{2}\right)^{2} + 2 \left(\omega R\right) \left(\frac{\omega R}{2}\right) cos 120 ^\circ \right\\}\right)^{\frac{1}{2}} =32ωR=\frac{\sqrt{3}}{2}\omega R