Question
Physics Question on laws of motion
A horizontal disk is rotating with angular velocity ω about a vertical axis passing through its centre. A ball is placed at the centre of groove and pushed slightly. The velocity of the ball when it comes out of the groove-
A
23ωR
B
2ωR
C
ωR
D
2ωR
Answer
23ωR
Explanation
Solution
Let us consider the motion of the ball with respect to disk Netforcealonggroove=mω2rsinθ =mω2rrx =mω2x ∴ma=mω2x ⇒vdxdv=ω2x ⇒∫0vvdv=∫0R/2ω2xdx ⇒2v2=2(ω)2(2R)2 ⇒v=2ωR v→Ball,Ground=v→Ball,Disk+v→Disk,Ground ∴v→Ball,Ground = \, \left(\left\\{\left(\omega R\right)^{2} + \left(\frac{\omega R}{2}\right)^{2} + 2 \left(\omega R\right) \left(\frac{\omega R}{2}\right) cos 120 ^\circ \right\\}\right)^{\frac{1}{2}} =23ωR