Solveeit Logo

Question

Question: A horizontal disk is rotating with angular velocity 'w' about a vertical axis passing through its ce...

A horizontal disk is rotating with angular velocity 'w' about a vertical axis passing through its centre. A ball is placed at the centre of groove and pushed slightly. The velocity of ball when it comes out of the groove –

A

32\frac{\sqrt{3}}{2}wR

B

ωR2\frac{\mathbf{\omega R}}{\mathbf{2}}

C

wR

D

ωR2\frac{\mathbf{\omega R}}{\sqrt{\mathbf{2}}}

Answer

32\frac{\sqrt{3}}{2}wR

Explanation

Solution

Let us consider motion of ball with respect to disk

Net force along groove = mw2r sin q

= mw2r xr\frac{x}{r}

= mw2x

\thereforema = mw2x

̃ v dvdx\frac{dv}{dx} = w2x

̃ v = ωR2\frac{\omega R}{2}

vBall,Ground{\overrightarrow{v}}_{Ball,Ground} = vBall,Disk{\overrightarrow{v}}_{Ball,Disk}+

vBall,Ground{\overrightarrow{v}}_{Ball,Ground}

\ vBall,Ground{\overrightarrow{v}}_{Ball,Ground}

={(ωR)2+(ωR2)2+2(ωR)(ωR2)cos120}12\left\{ (\omega R)^{2} + \left( \frac{\omega R}{2} \right)^{2} + 2(\omega R)\left( \frac{\omega R}{2} \right)\cos{}120{^\circ} \right\}^{\frac{1}{2}}=32ωR\frac{\sqrt{3}}{2}\omega R