Solveeit Logo

Question

Question: A horizontal disc rotates with a constant angular velocity ω about a vertical axis passing through i...

A horizontal disc rotates with a constant angular velocity ω about a vertical axis passing through its centre. A small body m moves along a diameter with a velocity v. Find the force the disc exerts on the body when it is at a distance r located from the rotation axis.

A

mrω2 + 2mvω

B

mg + m2r2ω4+(2mvω)2\sqrt { m ^ { 2 } r ^ { 2 } \omega ^ { 4 } + ( 2 m v \omega ) ^ { 2 } }

C

m2 g2+(2mvω)2+mrω2\sqrt { \mathrm { m } ^ { 2 } \mathrm {~g} ^ { 2 } + ( 2 \mathrm { mv } \omega ) ^ { 2 } } + \mathrm { mr } \omega ^ { 2 }

D

mg2+r2ω4+(2vω)2m \sqrt { g ^ { 2 } + r ^ { 2 } \omega ^ { 4 } + ( 2 v \omega ) ^ { 2 } }

Answer

mg2+r2ω4+(2vω)2m \sqrt { g ^ { 2 } + r ^ { 2 } \omega ^ { 4 } + ( 2 v \omega ) ^ { 2 } }

Explanation

Solution

The force mg is vertical, 2mvω perpendicular to vertical plane and mrω2 outward along the diameter. The resultant force is

F = mg2+r2ω4+(2vω)2m \sqrt { g ^ { 2 } + r ^ { 2 } \omega ^ { 4 } + ( 2 v \omega ) ^ { 2 } }