Solveeit Logo

Question

Question: A hollow sphere has a radius of 6.4 m. Minimum velocity required by a motorcyclist at the bottom to ...

A hollow sphere has a radius of 6.4 m. Minimum velocity required by a motorcyclist at the bottom to complete the circle will be

A

12.4 m/s

B

14.5 m/s

C

8.5 m/s

D

17.7 m/s

Answer

17.7 m/s

Explanation

Solution

To complete a vertical circle, the motorcyclist must have a minimum velocity such that they just maintain contact with the sphere at the top of the circle. At this point, the normal force exerted by the sphere on the motorcyclist becomes zero, and the centripetal force required is provided solely by gravity.

Let RR be the radius of the hollow sphere and mm be the mass of the motorcyclist.

At the top of the circle, for minimum velocity vtopv_{top}: The gravitational force mgmg provides the necessary centripetal force.

mg=mvtop2Rmg = \frac{mv_{top}^2}{R} vtop2=gRv_{top}^2 = gR

Now, we use the principle of conservation of mechanical energy between the bottom and the top of the circle. Let vbottomv_{bottom} be the velocity at the bottom. Taking the bottom of the sphere as the reference level for potential energy (PE = 0). The height of the top of the sphere from the bottom is 2R2R.

Energy at the bottom: Ebottom=12mvbottom2+0E_{bottom} = \frac{1}{2}mv_{bottom}^2 + 0

Energy at the top: Etop=12mvtop2+mg(2R)E_{top} = \frac{1}{2}mv_{top}^2 + mg(2R)

By conservation of energy, Ebottom=EtopE_{bottom} = E_{top}: 12mvbottom2=12mvtop2+mg(2R)\frac{1}{2}mv_{bottom}^2 = \frac{1}{2}mv_{top}^2 + mg(2R) Divide by mm: 12vbottom2=12vtop2+2gR\frac{1}{2}v_{bottom}^2 = \frac{1}{2}v_{top}^2 + 2gR Substitute vtop2=gRv_{top}^2 = gR: 12vbottom2=12(gR)+2gR\frac{1}{2}v_{bottom}^2 = \frac{1}{2}(gR) + 2gR 12vbottom2=(12+2)gR\frac{1}{2}v_{bottom}^2 = \left(\frac{1}{2} + 2\right)gR 12vbottom2=52gR\frac{1}{2}v_{bottom}^2 = \frac{5}{2}gR vbottom2=5gRv_{bottom}^2 = 5gR vbottom=5gRv_{bottom} = \sqrt{5gR}

Given: Radius R=6.4mR = 6.4\,m Gravitational acceleration g9.8m/s2g \approx 9.8\,m/s^2

Calculate vbottomv_{bottom}: vbottom=5×9.8×6.4v_{bottom} = \sqrt{5 \times 9.8 \times 6.4} vbottom=49×6.4v_{bottom} = \sqrt{49 \times 6.4} vbottom=313.6v_{bottom} = \sqrt{313.6} vbottom17.708m/sv_{bottom} \approx 17.708\,m/s

Rounding to one decimal place, vbottom17.7m/sv_{bottom} \approx 17.7\,m/s.