Question
Question: A hollow iron pipe of \(21cm\) long and its external diameter is \(8cm\). If the thickness of the pi...
A hollow iron pipe of 21cm long and its external diameter is 8cm. If the thickness of the pipes is 1cm and iron weights 8gm/cm2, then the weight of the pipe is equal to
A. 3.6 kg
B. 3.69 kg
C. 36 kg
D. 36.96 kg
Solution
Hint: Find the radius of inner surface using thickness and outer surface using thickness and outer surface and hence use the formula to find volume π(R2−r2)h where R,r are outer and inner radiuses of cylinder. Then multiply by 8g/cm3 to find weight.
Complete step-by-step answer:
In the question we are given a hollow iron pipe of 21cm long and its external diameter is 8cm. If the thickness of the pipes is 1cm and also said that iron weighs 8g/cm3.
Now in the question we are asked to find the weight of pipe, so hence we have to find the volume which we can get using formula:
π(R2−r2)h Where thickness can be represented as (R−r) , here R is external radius and r is internal radius and h is height.
As we know external diameter is 8cm so external radius is 4cm. In the question thickness is given as 1cm so the inner radius will be 4cm−1cm=3cm.
Hence the R=4cm,r=3cm and height is 21cm and value of π=722.
⇒ The volume is π(R2−r2)h which is 722×(42−32)×21
This can be simplified as,
22×21=462cm3.
⇒ The volume of pipe is 462cm3.
We are given density iron which is 8g/cm3. So for 1cm3 of iron it weighs 8g.
Hence for 462cm3, the iron will weighs,
(462×8)g=3696g or 3.696kg.
The correct option is ‘B’.
Note: Students should know to find the radius of either external or internal if one of them and thickness is given. They should also know about formulas related to it.
Another approach when the hollow pipes formula i.e., π(R2−r2)h, is not known. In this case, we can find out the volume of the outer cylinder and then subtract its volume from the inner cylinder. So using this volume of the hollow pipe will be,
π(R2)h−π(r2)h