Solveeit Logo

Question

Physics Question on Gauss Law

A hollow cylinder has a charge qCq\,\, C within it. If Φ\Phi is the electric flux in unit of voltmeter associated with the curved surface BB, the flux linked with the plane surface AA in unit of voltmeter will be

A

12(qε0ϕ)\frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right)

B

q2ε0\frac{q}{2 \varepsilon_{0}}

C

ϕ3\frac{\phi}{3}

D

qε0ϕ\frac{q}{\varepsilon_{0}}-\phi

Answer

12(qε0ϕ)\frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right)

Explanation

Solution

Apply Gauss's law to calculate the charge associated with plane surface AA. Gauss's law states that the net electric flux thorugh any closed surface is equal to the net charge inside the surface divided by ε0\varepsilon_{0}. ie, ϕtotal =qε0\phi_{\text {total }}=\frac{q}{\varepsilon_{0}} Let electric flux linked with surfaces A,BA, B and CC are ϕA,ϕB\phi_{A}, \phi_{B} and ϕC\phi_{C} respectively. That is ϕtotal =ϕA+ϕB+ϕC\phi_{\text {total }} =\phi_{A}+\phi_{B}+\phi_{C} ϕC=ϕA\phi_{C} =\phi_{A} Since, ϕC=ϕA \phi_{C}=\phi_{A} 2ϕA+ϕB=ϕtotal =qε0\therefore 2 \phi_{A}+\phi_{B}=\phi_{\text {total }}=\frac{q}{\varepsilon_{0}} or ϕA=12(qε0ϕB) \phi_{A}=\frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi_{B}\right) But ϕB=ϕ \phi_{B}=\phi (given) Hence, ϕA=12(qε0ϕ) \phi_{A}=\frac{1}{2}\left(\frac{q}{\varepsilon_{0}}-\phi\right)