Solveeit Logo

Question

Physics Question on thermal properties of matter

A hole is drilled in a copper sheer. The diameter of the hole is 4.24 cm at 27.0^\circC . What is the change in the diameter of the hole when the sheet is heated to 227^\circC ? Coeffecient of linear expansion of copper = 1.70×105K11.70 \times 10^{-5}\,K^{-1}

A

1.44×102cm1.44 \times 10^{-2}\,cm

B

14.4×102cm14.4 \times 10^{-2}\,cm

C

144×102cm144 \times 10^{-2}\,cm

D

0.144×102cm0.144 \times 10^{-2}\,cm

Answer

1.44×102cm1.44 \times 10^{-2}\,cm

Explanation

Solution

Initial temperature, T1=27.0CT _{1}=27.0^{\circ} C Diameter of the hole at T1,d1=4.24cmT _{1}, d _{1}=4.24 cm Final temperature, T2=227CT _{2}=227^{\circ} C Diameter of the hole at T2=D2T _{2}= D _{2} Co-efficient of linear expansion of copper, αCu=1.70×105K1\alpha_{ Cu }=1.70 \times 10^{-5} K ^{-1} For co-efficient of superficial expansion β\beta, and change in temperature T\triangle T, we have the relation: Change in area ()/(\triangle) / Original area (A)=βT(A)=\beta \triangle T [(πd22/4)(πd22/4)]/(πd11/4)=A/A\left[\left(\pi d _{2}^{2} / 4\right)-\left(\pi d _{2}^{2} / 4\right)\right] /\left(\pi d _{1}^{1} / 4\right)=\triangle A / A A/A=(d22d12)/d12\therefore \triangle A / A =\left( d _{2}^{2}- d _{1}^{2}\right) / d _{1}^{2} But β=2α\beta=2 \alpha (d22d12)/d12=2αΔT\therefore\left( d _{2}^{2}- d _{1}^{2}\right) / d _{1}^{2}=2 \alpha \Delta T