Solveeit Logo

Question

Question: A hemispherical bowl just floats without sinking in a liquid of density 1.2 × 10<sup>3</sup>kg/m<sup...

A hemispherical bowl just floats without sinking in a liquid of density 1.2 × 103kg/m3. If outer diameter and the density of the bowl are 1 m and 2 × 104kg/m3 respectively, then the inner diameter of the bowl will be

A

0.94 m

B

0.97 m

C

0.98 m

D

0.99 m

Answer

0.98 m

Explanation

Solution

Weight of the bowl = mg = VρgV \rho g =43π[(D2)3(d2)3]ρg= \frac { 4 } { 3 } \pi \left[ \left( \frac { D } { 2 } \right) ^ { 3 } - \left( \frac { d } { 2 } \right) ^ { 3 } \right] \rho g

where D is the outer diameter , d is the inner diameter and ρ\rho

is the density of bowl

Weight of the liquid displaced by the bowl

=43π(D2)3σg= \frac { 4 } { 3 } \pi \left( \frac { D } { 2 } \right) ^ { 3 } \sigma g

where σ\sigma is the density of the liquid.

For the flotation 43π(D2)3σg=43π[(D2)3(d2)3]ρg\frac { 4 } { 3 } \pi \left( \frac { D } { 2 } \right) ^ { 3 } \sigma g = \frac { 4 } { 3 } \pi \left[ \left( \frac { D } { 2 } \right) ^ { 3 } - \left( \frac { d } { 2 } \right) ^ { 3 } \right] \rho g

(12)3×1.2×103=[(12)3(d2)3]2×104\left( \frac { 1 } { 2 } \right) ^ { 3 } \times 1.2 \times 10 ^ { 3 } = \left[ \left( \frac { 1 } { 2 } \right) ^ { 3 } - \left( \frac { d } { 2 } \right) ^ { 3 } \right] 2 \times 10 ^ { 4 }

By solving we get d = 0.98 m.