Solveeit Logo

Question

Mathematics Question on Application of derivatives

A helicopter is flying along the curve given by yx3/2=7,(x0)y - x^{3/2} = 7, (x \ge 0). A soldier positioned at the point (12,7)\left(\frac{1}{2}, 7\right) wants to shoot down the helicopter when it is nearest to him. Then this nearest distance is :

A

12\frac{1}{2}

B

1373\frac{1}{3} \sqrt{\frac{7}{3} }

C

1673\frac{1}{6} \sqrt{\frac{7}{3} }

D

56\frac{\sqrt{5}}{6}

Answer

1673\frac{1}{6} \sqrt{\frac{7}{3} }

Explanation

Solution

yx3/2=7(x0)y-x^{3/2} =7\left(x\ge0\right)
dydx=32x1/2\frac{dy}{dx} =\frac{3}{2}x^{1/2}
(32x)(7y12x)=1\left(\frac{3}{2} \sqrt{x}\right)\left(\frac{7-y}{\frac{1}{2}-x}\right)=-1
(32x)(x3/212x)=1\left(\frac{3}{2} \sqrt{x}\right) \left(\frac{-x^{3/2}}{\frac{1}{2}-x}\right) =-1
32.x2=12x\frac{3}{2}.x^{2} =\frac{1}{2}-x
3x2=12x3x^{2} =1-2x
3x2+2x1=03x^{2}+2x-1=0
3x2+3xx1=03x^{2}+3x-x-1=0
(x+1)(3x1)=0\left(x+1\right)\left(3x-1\right)=0
x=1\therefore x=-1 (rejected)
x=13x=\frac{1}{3}
y=7+x3/2=7+(13)3/2y=7+x^{3/2} =7+\left(\frac{1}{3}\right)^{3/2}
AB=(1213)2+(13)3=136+127\ell_{AB} = \sqrt{\left(\frac{1}{2} -\frac{1}{3}\right)^{2} +\left(\frac{1}{3}\right)^{3}} = \sqrt{\frac{1}{36}+\frac{1}{27}}
=3+49×12= \sqrt{\frac{3+4}{9\times12}}
=7108=1673=\sqrt{\frac{7}{108}} = \frac{1}{6} \sqrt{\frac{7}{3}}