Solveeit Logo

Question

Question: A helicopter flies horizontally with constant velocity in a direction $30^\circ$ east of north betwe...

A helicopter flies horizontally with constant velocity in a direction 3030^\circ east of north between two points AA and BB at a distance 323\sqrt{2} km apart. Wind is blowing from south with a constant speed of 20 m/s. The speed of the helicopter is 1.5 times the speed of air, the helicopter flies from AA to BB and then returns from BB to AA with same speed relative to air in same wind. Find the total time for the journey in minutes assuming that the helicopter requires negligible time to stop or reverse its direction.

Answer

8

Explanation

Solution

The helicopter flies from point A to point B and then returns from B to A. The distance between A and B is d=32d = 3\sqrt{2} km. The direction from A to B is 3030^\circ east of north. Let's set up a coordinate system with the positive x-axis pointing east and the positive y-axis pointing north. The direction from A to B is represented by a unit vector u^AB=sin(30)i^+cos(30)j^=12i^+32j^\hat{u}_{AB} = \sin(30^\circ) \hat{i} + \cos(30^\circ) \hat{j} = \frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}. The direction from B to A is u^BA=u^AB=12i^32j^\hat{u}_{BA} = -\hat{u}_{AB} = -\frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j}. The distance d=32d = 3\sqrt{2} km =32×1000= 3\sqrt{2} \times 1000 m.

The wind is blowing from the south with a constant speed of vw=20v_w = 20 m/s. This means the wind velocity is directed towards the north, so vw=20j^\vec{v}_w = 20 \hat{j} m/s. The speed of the helicopter relative to the air is vh=1.5×vw=1.5×20=30v_h = 1.5 \times v_w = 1.5 \times 20 = 30 m/s.

Let v\vec{v} be the velocity of the helicopter relative to the ground. The relationship between the velocities is v=vh+vw\vec{v} = \vec{v}_h + \vec{v}_w.

Journey from A to B: The helicopter flies with a constant velocity vAB\vec{v}_{AB} relative to the ground in the direction u^AB\hat{u}_{AB}. Let the magnitude of this velocity be vABv_{AB}. So, vAB=vABu^AB=vAB(12i^+32j^)\vec{v}_{AB} = v_{AB} \hat{u}_{AB} = v_{AB} (\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}). Let the velocity of the helicopter relative to the air be vh,AB\vec{v}_{h,AB} with magnitude vh=30v_h = 30 m/s. Let vh,AB=vh(cosθi^+sinθj^)\vec{v}_{h,AB} = v_h (\cos\theta \hat{i} + \sin\theta \hat{j}). vAB=vh,AB+vw\vec{v}_{AB} = \vec{v}_{h,AB} + \vec{v}_w vAB(12i^+32j^)=30cosθi^+30sinθj^+20j^v_{AB} (\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}) = 30 \cos\theta \hat{i} + 30 \sin\theta \hat{j} + 20 \hat{j} vAB(12i^+32j^)=30cosθi^+(30sinθ+20)j^v_{AB} (\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}) = 30 \cos\theta \hat{i} + (30 \sin\theta + 20) \hat{j} Comparing components: vAB2=30cosθ    cosθ=vAB60\frac{v_{AB}}{2} = 30 \cos\theta \implies \cos\theta = \frac{v_{AB}}{60} vAB32=30sinθ+20    sinθ=vAB34060\frac{v_{AB}\sqrt{3}}{2} = 30 \sin\theta + 20 \implies \sin\theta = \frac{v_{AB}\sqrt{3} - 40}{60} Using cos2θ+sin2θ=1\cos^2\theta + \sin^2\theta = 1: (vAB60)2+(vAB34060)2=1(\frac{v_{AB}}{60})^2 + (\frac{v_{AB}\sqrt{3} - 40}{60})^2 = 1 vAB2+(vAB340)2=3600v_{AB}^2 + (v_{AB}\sqrt{3} - 40)^2 = 3600 vAB2+3vAB2803vAB+1600=3600v_{AB}^2 + 3v_{AB}^2 - 80\sqrt{3}v_{AB} + 1600 = 3600 4vAB2803vAB2000=04v_{AB}^2 - 80\sqrt{3}v_{AB} - 2000 = 0 vAB2203vAB500=0v_{AB}^2 - 20\sqrt{3}v_{AB} - 500 = 0 Solving the quadratic equation for vABv_{AB}: vAB=203±(203)24(1)(500)2=203±1200+20002=203±4022=103±202v_{AB} = \frac{20\sqrt{3} \pm \sqrt{(-20\sqrt{3})^2 - 4(1)(-500)}}{2} = \frac{20\sqrt{3} \pm \sqrt{1200 + 2000}}{2} = \frac{20\sqrt{3} \pm 40\sqrt{2}}{2} = 10\sqrt{3} \pm 20\sqrt{2}. Since vAB>0v_{AB} > 0, we take the positive root: vAB=103+202v_{AB} = 10\sqrt{3} + 20\sqrt{2} m/s. Time taken for A to B: tAB=dvAB=30002103+202=30023+22=3002(322)(3)2(22)2=300(64)38=300(64)5=60(46)t_{AB} = \frac{d}{v_{AB}} = \frac{3000\sqrt{2}}{10\sqrt{3} + 20\sqrt{2}} = \frac{300\sqrt{2}}{\sqrt{3} + 2\sqrt{2}} = \frac{300\sqrt{2}(\sqrt{3} - 2\sqrt{2})}{(\sqrt{3})^2 - (2\sqrt{2})^2} = \frac{300(\sqrt{6} - 4)}{3 - 8} = \frac{300(\sqrt{6} - 4)}{-5} = 60(4 - \sqrt{6}) seconds.

Journey from B to A: The helicopter flies with a constant velocity vBA\vec{v}_{BA} relative to the ground in the direction u^BA\hat{u}_{BA}. Let the magnitude of this velocity be vBAv_{BA}. So, vBA=vBAu^BA=vBA(12i^32j^)\vec{v}_{BA} = v_{BA} \hat{u}_{BA} = v_{BA} (-\frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j}). Let the velocity of the helicopter relative to the air be vh,BA\vec{v}_{h,BA} with magnitude vh=30v_h = 30 m/s. Let vh,BA=30(cosϕi^+sinϕj^)\vec{v}_{h,BA} = 30 (\cos\phi \hat{i} + \sin\phi \hat{j}). vBA=vh,BA+vw\vec{v}_{BA} = \vec{v}_{h,BA} + \vec{v}_w vBA(12i^32j^)=30cosϕi^+30sinϕj^+20j^v_{BA} (-\frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j}) = 30 \cos\phi \hat{i} + 30 \sin\phi \hat{j} + 20 \hat{j} vBA(12i^+32j^)=30cosϕi^+(30sinϕ+20)j^-v_{BA} (\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}) = 30 \cos\phi \hat{i} + (30 \sin\phi + 20) \hat{j} Comparing components: vBA2=30cosϕ    cosϕ=vBA60-\frac{v_{BA}}{2} = 30 \cos\phi \implies \cos\phi = -\frac{v_{BA}}{60} vBA32=30sinϕ+20    sinϕ=vBA34060-\frac{v_{BA}\sqrt{3}}{2} = 30 \sin\phi + 20 \implies \sin\phi = \frac{-v_{BA}\sqrt{3} - 40}{60} Using cos2ϕ+sin2ϕ=1\cos^2\phi + \sin^2\phi = 1: (vBA60)2+(vBA34060)2=1(-\frac{v_{BA}}{60})^2 + (\frac{-v_{BA}\sqrt{3} - 40}{60})^2 = 1 vBA2+(vBA3+40)2=3600v_{BA}^2 + (v_{BA}\sqrt{3} + 40)^2 = 3600 vBA2+3vBA2+803vBA+1600=3600v_{BA}^2 + 3v_{BA}^2 + 80\sqrt{3}v_{BA} + 1600 = 3600 4vBA2+803vBA2000=04v_{BA}^2 + 80\sqrt{3}v_{BA} - 2000 = 0 vBA2+203vBA500=0v_{BA}^2 + 20\sqrt{3}v_{BA} - 500 = 0 Solving the quadratic equation for vBAv_{BA}: vBA=203±(203)24(1)(500)2=203±1200+20002=203±4022=103±202v_{BA} = \frac{-20\sqrt{3} \pm \sqrt{(20\sqrt{3})^2 - 4(1)(-500)}}{2} = \frac{-20\sqrt{3} \pm \sqrt{1200 + 2000}}{2} = \frac{-20\sqrt{3} \pm 40\sqrt{2}}{2} = -10\sqrt{3} \pm 20\sqrt{2}. Since vBA>0v_{BA} > 0, we take the positive root: vBA=103+202=202103v_{BA} = -10\sqrt{3} + 20\sqrt{2} = 20\sqrt{2} - 10\sqrt{3} m/s. Time taken for B to A: tBA=dvBA=30002202103=3002223=3002(22+3)(22)2(3)2=300(4+6)83=300(4+6)5=60(4+6)t_{BA} = \frac{d}{v_{BA}} = \frac{3000\sqrt{2}}{20\sqrt{2} - 10\sqrt{3}} = \frac{300\sqrt{2}}{2\sqrt{2} - \sqrt{3}} = \frac{300\sqrt{2}(2\sqrt{2} + \sqrt{3})}{(2\sqrt{2})^2 - (\sqrt{3})^2} = \frac{300(4 + \sqrt{6})}{8 - 3} = \frac{300(4 + \sqrt{6})}{5} = 60(4 + \sqrt{6}) seconds.

Total time for the journey T=tAB+tBA=(240606)+(240+606)=480T = t_{AB} + t_{BA} = (240 - 60\sqrt{6}) + (240 + 60\sqrt{6}) = 480 seconds. The question asks for the total time in minutes. T=480 seconds=48060 minutes=8 minutesT = 480 \text{ seconds} = \frac{480}{60} \text{ minutes} = 8 \text{ minutes}.