Solveeit Logo

Question

Physics Question on projectile motion

A heavy stone hanging from a massless string of length 15m15\, m is projected horizontally with speed 147m/s147\, m/ s. The speed of the particle at the point where the tension in the string equals the weight of the particle is?

A

10 m/s

B

7 m/s

C

12 m/s

D

None of these

Answer

7 m/s

Explanation

Solution

mgmgcosθ=mv2lm g-mg \cos \theta=\frac{m v^{2}}{l} or v2l=g(1cosθ)v2=gl(1cosθ)\frac{v^{2}}{l}=g(1-\cos \theta) v^{2}=g l(1-\cos \theta) ...(i) Applying conservation of energy 12mgl=12mv2+mgl(1cosθ)\frac{1}{2} m g l=\frac{1}{2} m v^{2}+m g l(1-\cos \theta) v2=glo2gl(1cosθ)v^{2}=glo-2 g l(1-\cos \theta) ...(ii) Solving Eqs. (i) and (ii), we get θ=cos123\theta=\cos ^{-1} \frac{2}{3} From E (i) v2=10×15(123)v^{2}=10 \times 15\left(1-\frac{2}{3}\right) =150(13)=50=150\left(\frac{1}{3}\right)=50 v=50=7m/s\therefore v=\sqrt{50}=7\, m / s