Solveeit Logo

Question

Physics Question on Oscillations

A heavy small-sized sphere is suspended by a string of length L The sphere rotates uniformly in a horizontal circle with the string making an angle θ\theta with the vertical. Then, the time-period of this conical pendulum is

A

t=2πlgt=2\pi \sqrt{\frac{l}{g}}

B

t=2πlsinθgt=2\pi \sqrt{\frac{l\sin \theta }{g}}

C

t=2πlcosθgt=2\pi \sqrt{\frac{l\cos \theta }{g}}

D

t=2πlgcosθt=2\pi \sqrt{\frac{l}{g\cos \theta }}

Answer

t=2πlcosθgt=2\pi \sqrt{\frac{l\cos \theta }{g}}

Explanation

Solution

Radius of circular path in the horizontal plane r=lsinθr=l \sin \theta Resolving TT along the vertical and horizontal directions, we get Tcosθ=MgT \,\cos\, \theta=M g \ldots(i) Tsinθ=Mrω2=M(lsinθ)ω2T \,\sin \,\theta=Mr \omega^{2}=M(l \sin \theta) \omega^{2} or T=Mlω2T=M l \omega^{2} \ldots(ii) Dividing E (ii) by E (i), we get 1cosθ=lω2g or ω2=glcosθ\frac{1}{\cos \theta}=\frac{l \omega^{2}}{g} \text { or } \omega^{2}=\frac{g}{l \cos \theta} \therefore Time period ? t=2πω=2πlcosθgt=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{l \cos \theta}{g}}