Solveeit Logo

Question

Physics Question on Oscillations

A heavy brass sphere is hung from a weightless inelastic spring and as a simple pendulum its time period of oscillation is T. When the sphere is immersed in a non-viscous liquid of density 1/10 that of brass, it will act as a simple pendulum of period :

A

TT

B

109T\frac{10}{9}T

C

(910)T\sqrt{\left( \frac{9}{10} \right)}T

D

(109)T\sqrt{\left( \frac{10}{9} \right)}T

Answer

(109)T\sqrt{\left( \frac{10}{9} \right)}T

Explanation

Solution

The time period pendulum in air T=2πlgT=2\pi \sqrt{\frac{l}{g}} ..(i) ll
being the length of simple pendulum. In liquid, effective weight of sphere
w=w'= weight of bob in air - up thrust
\Rightarrow ρvgff=mgmg\rho v{{g}_{ff}}=mg-m'g
=ρvg=ρvg=(ρρ)vg=\rho vg=\rho 'vg=(\rho -\rho ')vg
where ρ=\rho '= density of sphere
ρ=\rho = density of liquid \therefore
geff=(ρρ/10ρ)g=910g{{g}_{eff}}=\left( \frac{\rho -\rho /10}{\rho } \right)g=\frac{9}{10}g
Thus, T=2πlgeff=2πl910gT'=2\pi \sqrt{\frac{l}{{{g}_{eff}}}}=2\pi \sqrt{\frac{l}{\frac{9}{10}g}}
TT=109\frac{T'}{T}=\sqrt{\frac{10}{9}}
or T=109TT'=\sqrt{\frac{10}{9}}\,T