Solveeit Logo

Question

Question: A heavy block is attached to the ceiling by a spring that has a force constant ‘k’. A conducting rod...

A heavy block is attached to the ceiling by a spring that has a force constant ‘k’. A conducting rod is attached to block. The combined mass of the block and the rod is m. The rod can slide without friction along two vertical parallel rails, which are a distance L apart. A capacitor of known capacitance C is attached to the rails by the wires. The entire system is placed in a uniform magnetic field B. Find the time period T of the vertical oscillations of the block. Neglect the electrical resistance of the rod and all wires

A

2π m+CB2 L2k2 \pi \sqrt { \frac { \mathrm {~m} + \mathrm { CB } ^ { 2 } \mathrm {~L} ^ { 2 } } { \mathrm { k } } }

B

2πm2+CBLk2 \pi \sqrt { \frac { \mathrm { m } ^ { 2 } + \mathrm { CBL } } { \mathrm { k } } }

C

4πm2+CB2 L2k4 \pi \sqrt { \frac { \mathrm { m } ^ { 2 } + \mathrm { CB } ^ { 2 } \mathrm {~L} ^ { 2 } } { \mathrm { k } } }

D

None of these

Answer

2π m+CB2 L2k2 \pi \sqrt { \frac { \mathrm {~m} + \mathrm { CB } ^ { 2 } \mathrm {~L} ^ { 2 } } { \mathrm { k } } }

Explanation

Solution

Using Kirchoff ’s equation

Blv = 0 [Where ]

q = CBlv

i = dqdt\frac { \mathrm { dq } } { \mathrm { dt } } = CBl dvdt\frac { \mathrm { dv } } { \mathrm { dt } }

Magnetic force on AB bar or block = Bil

Fmag = B2l2C dvdt\frac { \mathrm { dv } } { \mathrm { dt } }

For initial equilibrium,

kx = mg ... (1)

mg k(x + y) B2l2C= ma ... (2)

mg kx ky B2l2Ca = ma

a = km+B22Cay\frac { - \mathrm { k } } { \mathrm { m } + \mathrm { B } ^ { 2 } \ell ^ { 2 } \mathrm { Ca } } \mathrm { y }

Comparing equation of a by a = w2y

w =

T = 2π m+CB2 L2k2 \pi \sqrt { \frac { \mathrm {~m} + \mathrm { CB } ^ { 2 } \mathrm {~L} ^ { 2 } } { \mathrm { k } } }