Solveeit Logo

Question

Question: A hand book states that the solubility of \({\text{RN}}{{\text{H}}_2}{\text{ }}(g)\) in water at \(1...

A hand book states that the solubility of RNH2 (g){\text{RN}}{{\text{H}}_2}{\text{ }}(g) in water at 1 atm1{\text{ atm}} and 0 C0{{\text{ }}^ \circ }{\text{C}}is 22.4122.41volumes of RNH2 (g){\text{RN}}{{\text{H}}_{2{\text{ }}}}(g) per volume of water. ( pKb{\text{p}}{{\text{K}}_{\text{b}}} of RNH2{\text{RN}}{{\text{H}}_2} = 4 = {\text{ 4}} ) . Find the max. pOH{\text{pOH}} that can be obtained by dissolving RNH2{\text{RN}}{{\text{H}}_2} in water:
(A)1
(B) 2
(C) 4
(D) 6

Explanation

Solution

Here it is given that an alkyl amine is dissolved in water at a given temperature and pressure to attain a particular volume given in the question. The base dissociation constant value of the alkyl amine is given. We have to find out the maximum pOH{\text{pOH}} attained by dissolving it in water.

Complete step by step solution:
In this question, we have been provided with some information as follows:
Pressure, P = 1 atm1{\text{ atm}}
Temperature, T = 0 C0{{\text{ }}^ \circ }{\text{C}}
Volume, V = 22.4122.41 L{\text{L}}
pKb{\text{p}}{{\text{K}}_{\text{b}}} of RNH2{\text{RN}}{{\text{H}}_2} = 4 = {\text{ 4}}
We also know that we can calculate the concentration of OH{\text{O}}{{\text{H}}^ - } ions using the equation
[OH] = Kb×C\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }}\sqrt {{{\text{K}}_{\text{b}}} \times {\text{C}}}
where, [OH] \left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ }}is the concentration of OH{\text{O}}{{\text{H}}^ - } ions,
Kb{{\text{K}}_{\text{b}}} is the base dissociation constant
And, C{\text{C}} is the concentration of the base.
Taking logarithm on both sides, we get,
log[OH] = log(Kb×C)12{\text{log}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = log}}{\left( {{{\text{K}}_{\text{b}}} \times {\text{C}}} \right)^{\dfrac{1}{2}}}
Further, we can write this equation as,
log[OH] = 12log(Kb×C){\text{log}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }}\dfrac{1}{2}{\text{log}}\left( {{{\text{K}}_{\text{b}}} \times {\text{C}}} \right)
We can write this as,
log[OH] = 12[log Kb + log C]{\text{log}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }}\dfrac{1}{2}\left[ {{\text{log }}{{\text{K}}_{\text{b}}}{\text{ + log C}}} \right]
Taking negative sign on both the sides,
 - log[OH] = 12[ - log Kb + - log C]{\text{ - log}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }}\dfrac{1}{2}\left[ {{\text{ - log }}{{\text{K}}_{\text{b}}}{\text{ + - log C}}} \right]
Since, we know that, pOH = - log[OH]{\text{pOH = - log}}\left[ {{\text{O}}{{\text{H}}^ - }} \right] and pKb = - log[pKb]{\text{p}}{{\text{K}}_{\text{b}}}{\text{ = - log}}\left[ {{\text{p}}{{\text{K}}_{\text{b}}}} \right] ,
The above equation can be rewritten as,
pOH = 12[pKb log C]{\text{pOH = }}\dfrac{1}{2}\left[ {{\text{p}}{{\text{K}}_{\text{b}}} - {\text{ log C}}} \right]

Now, in order to calculate the pOH{\text{pOH}} value, we need to calculate the value of concentration of base, so that we can substitute the values in the previous equation and find out pOH{\text{pOH}} .
To calculate C{\text{C}} , we can use the ideal gas equation and find out the number of moles,
The ideal gas equation is,
PV = nRT{\text{PV = nRT}}
Substituting the values of P , V and T{\text{P , V and T}} from the question and putting the value of universal gas constant as
R = 0.0821 L atm K1 mol1{\text{R = 0}}{\text{.0821 L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} ,
Pressure, P = 1 atm1{\text{ atm}}
Temperature, T = 0 C0{{\text{ }}^ \circ }{\text{C}}
Volume, V = 22.4122.41 L{\text{L}}
Substituting in the equation,
1 atm × 22. 41 L = n × 0.0821 L atm K1 mol1 × 273 K1{\text{ atm }} \times {\text{ 22}}{\text{. 41 L = n }} \times {\text{ 0}}{\text{.0821 L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}{\text{ }} \times {\text{ 273 K}} \because 0 C0{{\text{ }}^ \circ }{\text{C}} = 273 K273{\text{ K}}
Rearranging the unknown to the L.H.S,
= 1 atm × 22. 41 L0.0821 L atm K1 mol1 × 273 K {\text{n }} = {\text{ }}\dfrac{{1{\text{ atm }} \times {\text{ 22}}{\text{. 41 L}}}}{{{\text{0}}{\text{.0821 L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}{\text{ }} \times {\text{ 273 K}}}}{\text{ }}
\therefore  1{\text{n }} \approx {\text{ 1}}
Calculating the concentration of base, we get,
[RNH2] = nV of solution (in L) = 1 mol1 L = 1 molL1 = 1 M\left[ {{\text{RN}}{{\text{H}}_2}} \right]{\text{ = }}\dfrac{{\text{n}}}{{{\text{V of solution (in L)}}}}{\text{ = }}\dfrac{{1{\text{ mol}}}}{{1{\text{ L}}}}{\text{ = 1 mol}}{{\text{L}}^{ - 1}}{\text{ = 1 M}}

We can calculate pOH{\text{pOH}} by substituting the values of Kb{{\text{K}}_{\text{b}}} and C{\text{C}} in the equation,
pOH = 12[pKb log C]{\text{pOH = }}\dfrac{1}{2}\left[ {{\text{p}}{{\text{K}}_{\text{b}}} - {\text{ log C}}} \right]
We will get,
\Rightarrow pOH = 12[4 log 1]{\text{pOH = }}\dfrac{1}{2}\left[ {4 - {\text{ log 1}}} \right]
\Rightarrow pOH = 12[4 0]{\text{pOH = }}\dfrac{1}{2}\left[ {4 - {\text{ 0}}} \right]
\Rightarrow pOH = 12[4]{\text{pOH = }}\dfrac{1}{2}\left[ 4 \right]
\Rightarrow pOH = 2{\text{pOH = 2}}
Thus, we get the value as pOH = 2{\text{pOH = 2}} .

Hence, option (B) is the correct answer.

Note:
Ka{{\text{K}}_{\text{a}}} is the acid dissociation constant of an acid where as Kb{{\text{K}}_{\text{b}}} is the base dissociation constant. pKa{\text{p}}{{\text{K}}_{\text{a}}} is the log{\text{log}} of acid dissociation constant and pKb{\text{p}}{{\text{K}}_{\text{b}}} is the log - {\text{log}} of base dissociation constant. These constants are usually expressed in terms of molL1{\text{mol}}{{\text{L}}^{ - 1}}.