Solveeit Logo

Question

Question: A hammer of mass M falls from a height h repeatedly to drive a pile of mass m into the ground. The h...

A hammer of mass M falls from a height h repeatedly to drive a pile of mass m into the ground. The hammer makes the pile penetrate in the ground to a distance d in single blow. Opposition to penetration is given by

A

B

+ (M + m)g

C

D

m2gh(m+M)d(M+m)g\frac { m ^ { 2 } g h } { ( m + M ) d } - ( M + m ) g

Answer

+ (M + m)g

Explanation

Solution

Using law of conservation of total momentum, we get

(M + m)v = M 2gh\sqrt { 2 g h } s

or v = M2ghM+m\frac { M \sqrt { 2 g h } } { M + m }

Let opposition to penetration be F then

Total work done = change in K.E.

i.e., F = 12\frac { 1 } { 2 } (M + m) (M2+2gh)d(M+m)2\frac { \left( \mathrm { M } ^ { 2 } + 2 \mathrm { gh } \right) } { \mathrm { d } ( \mathrm { M } + \mathrm { m } ) ^ { 2 } } + (M + m)g

= M2gh(M+m)d+(M+m)g\frac { \mathrm { M } ^ { 2 } \mathrm { gh } } { ( \mathrm { M } + \mathrm { m } ) \mathrm { d } } + ( \mathrm { M } + \mathrm { m } ) \mathrm { g }