Solveeit Logo

Question

Question: A group of \(45\) house owners contributed money towards the green environment of their street. The ...

A group of 4545 house owners contributed money towards the green environment of their street. The amount of money collected is shown in the table below.

Amount0200 - 20204020 - 40406040 - 60608060 - 808010080 - 100
No. of house owners22771212191955

Calculate the variance and the standard deviation.
A) 416, 20.4{\text{A) 416, 20}}{\text{.4}}
B) 6.76, 6.06{\text{B) 6}}{\text{.76, 6}}{\text{.06}}
C) 36.76, 6.76{\text{C) 36}}{\text{.76, 6}}{\text{.76}}
D) None of these{\text{D) None of these}}

Explanation

Solution

First, we have to find the mid- value of the class interval.
With the help of that, we need to find the mean and f(x - x)2\sum {{\text{f}}{{({\text{x - }}\overline {\text{x}} )}^2}} .
Using the below given formula, we can find the required answer.

Formula used: x= xff\overline {\text{x}} = {\text{ }}\dfrac{{\sum {{\text{xf}}} }}{{\sum {\text{f}} }}
σ2=f (x - x)2f\sigma _{}^2 = \dfrac{{\sum {{\text{f (x - }}\overline {\text{x}} {)^2}} }}{{\sum {\text{f}} }}
\sigma = f (x - x)2f{{\text{\sigma }}_{}}{\text{ = }}\sqrt {\dfrac{{\sum {{\text{f (x - }}\overline {\text{x}} {{\text{)}}^{\text{2}}}} }}{{\sum {\text{f}} }}}

Complete step-by-step solution:
In order to find the variance and standard deviation, we have to find f(x - x)2\sum {{\text{f}}{{({\text{x - }}\overline {\text{x}} )}^2}}
First, we will find the mean x\overline {\text{x}} .
For that, we have to find the mid value of the intervals.
Mid-value = upper limit + lower limit2\dfrac{{{\text{upper limit + lower limit}}}}{2}

AmountMid-value(X)f{\text{f}}xf{\text{xf}}
0200 - 200+202=10\dfrac{{0 + 20}}{2} = 10222020
204020 - 4020+402=30\dfrac{{20 + 40}}{2} = 3077210210
406040 - 6040+602=50\dfrac{{40 + 60}}{2} = 501212600600
608060 - 8060+802=70\dfrac{{60 + 80}}{2} = 70191913301330
8010080 - 10080+1002=90\dfrac{{80 + 100}}{2} = 9055450450
Total454526102610

Now, we will find the mean to compute f(x - x)2\sum {{\text{f}}{{({\text{x - }}\overline {\text{x}} )}^2}}
x= xff\overline {\text{x}} = {\text{ }}\dfrac{{\sum {{\text{xf}}} }}{{\sum {\text{f}} }}
Putting the values and we get
x= 261045\overline {\text{x}} = {\text{ }}\dfrac{{2610}}{{45}}
Let us divide the terms and we get
x= 58\overline {\text{x}} = {\text{ 58}}
Now, we will put into the table format

AmountMid-valuef{\text{f}}xf{\text{xf}}x - x{\text{x - }}\overline {\text{x}} (x - 58)({\text{x - 58}})(x - x)2{({\text{x - }}\overline {\text{x}} )^2}f(x - x)2{\text{f}}{({\text{x - }}\overline {\text{x}} )^2}
0200 - 20101022202048 - 482304230446084608
204020 - 4030307721021028 - 2878478454885488
406040 - 60505012126006008 - 86464768768
608060 - 807070191913301330121214414427362736
8010080 - 10090905545045032321024102451205120
Total4545261026101872018720

f(x - x)2\sum {{\text{f}}{{({\text{x - }}\overline {\text{x}} )}^2}} = 1872018720
Now we have to find variance,
σ2=f (x - x)2f\sigma _{}^2 = \dfrac{{\sum {{\text{f (x - }}\overline {\text{x}} {)^2}} }}{{\sum {\text{f}} }}
Putting the values and we get
σ2=1872045\sigma _{}^2 = \dfrac{{18720}}{{45}}
Let us divide the terms and we get
σ2=416\sigma _{}^2 = 416
Also, we have to find standard deviation,
σ = f (x - x)2f{{{\sigma }}_{}}{\text{ = }}\sqrt {\dfrac{{\sum {{\text{f (x - }}\overline {\text{x}} {{\text{)}}^{\text{2}}}} }}{{\sum {\text{f}} }}}
Putting the values and we get
σ = 1872045{{{\sigma }}_{}}{\text{ = }}\sqrt {\dfrac{{18720}}{{45}}}
On dividing the terms and we get
σ = 416{{{\sigma }}_{}}{\text{ = }}\sqrt {416}
On squaring the value and we get
σ = 20.39{{{\sigma }}_{}}{\text{ = 20}}{\text{.39}}
Again we conclude the value,
σ = 20.4{{{\sigma }}_{}}{\text{ = 20}}{\text{.4}}
Therefore variance is 416416 and standard deviation is 20.4{\text{20}}{\text{.4}}

So the required answer is option (A){\text{(A)}}

Note: Another way to check whether the answer is correct when asked in Multiple Choice Question type is that, square of standard deviation is variance.
With that logic we can easily find or check the answer.
Here, we have an option
Option A) is 416, 20.4{\text{A) is 416, 20}}{\text{.4}}
Here we have to find (20.4)2{\left( {{\text{20}}{\text{.4}}} \right)^2} and check whether it is equal to  416{\text{ 416}}
20.4 ×20.4 = 416{\text{20}}{\text{.4 }} \times {\text{20}}{\text{.4 = 416}}
Option B) is 6.76, 6.06{\text{B) is 6}}{\text{.76, 6}}{\text{.06}}
Here, 6.06×6.06=36.726.06 \times 6.06 = 36.72
6.76\ne 6.76
So cannot be the answer.
Option C) is 36.76, 6.76{\text{C) is 36}}{\text{.76, 6}}{\text{.76}}
And 6.76×6.76=45.6976.76 \times 6.76 = 45.697
36.76\ne 36.76
Thus, it cannot be the answer.
You can check in this method if you are not sure about the answer received.