Solveeit Logo

Question

Question: A groove is in the form of a broken line *ABC* and the position vectors of the three points are resp...

A groove is in the form of a broken line ABC and the position vectors of the three points are respectively 2i3j+2k2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}, 3i+2jk3\mathbf{i} + 2\mathbf{j} - \mathbf{k} and i+j+k\mathbf{i} + \mathbf{j} + \mathbf{k}. A force of magnitude 24324\sqrt{3} acts on a particle of unit mass kept at the point A and moves it along the groove to the point C. If the line of action of the force is parallel to the vector i+2j+k\mathbf{i} + 2\mathbf{j} + \mathbf{k} all along, the number of units of work done by the force is

A

1442144\sqrt{2}

B

1443144\sqrt{3}

C

72272\sqrt{2}

D

72372\sqrt{3}

Answer

72272\sqrt{2}

Explanation

Solution

F=(243)\overset{\rightarrow}{F} = (24\sqrt{3}) i+2j+ki+2j+k\frac{\mathbf{i} + 2\mathbf{j} + \mathbf{k}}{|\mathbf{i} + 2\mathbf{j} + \mathbf{k}|}= 2436(i+2j+k)\frac{24\sqrt{3}}{\sqrt{6}}(\mathbf{i} + 2\mathbf{j} + \mathbf{k})

= 122(i+2j+k)12\sqrt{2}(\mathbf{i} + 2\mathbf{j} + \mathbf{k})

Displacement r=\mathbf{r} = position vector of C Position vector of A = (i+j+k)(2i3j+2k)(\mathbf{i} + \mathbf{j} + \mathbf{k}) - (2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = (i+4jk)( - \mathbf{i} + 4\mathbf{j} - \mathbf{k})

Work done by the force W=r.FW = \mathbf{r}.\overset{\rightarrow}{F}

= (i+4jk).122(i+2j+k)( - \mathbf{i} + 4\mathbf{j} - \mathbf{k}).12\sqrt{2}(\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = 122(1+81)=72212\sqrt{2}( - 1 + 8 - 1) = 72\sqrt{2}