Solveeit Logo

Question

Physics Question on laws of motion

A given object takes nn times more time to slide down a 4545^{\circ} rough inclined plane as it takes to slide down a perfectly smooth 4545^{\circ} incline. The coefficient of kinetic friction between the object and the incline is :

A

11n2\frac{1}{1 -n^2}

B

11n2 1 - \frac{1}{n^2}

C

11n2\sqrt{ 1 - \frac{1}{n^2}}

D

11n2\sqrt{\frac{1}{1 - n^2}}

Answer

11n2 1 - \frac{1}{n^2}

Explanation

Solution

Consider the following figures:

We know that for a body moving with constant acceleration, the kinematics equation is given as s=ut+12at2s=u t+\frac{1}{2} a t^{2}.
Initial velocity, u=0s=12at2u=0 \Rightarrow s=\frac{1}{2} a t^{2}
2s=at2\Rightarrow 2 s=a t^{2}
t=2sa\Rightarrow t=\sqrt{\frac{2 s}{a}}
t1a\Rightarrow t \propto \frac{1}{\sqrt{a}}
Now for smooth inclined plane as=gsinθa_{s}=g \sin \theta
For rough inclined plane ar=gsinθgμcosθa_{ r }=g \sin \theta-g \mu \cos \theta
Also, time taken to travel down the smooth inclined plane ts=tt_{ s }=t and time taken to travel down the rough inclined plane tr=nt.t_{r}=n t .
Therefore, tstr=atas\frac{t_{s}}{t_{r}} =\sqrt{\frac{a_{t}}{a_{s}}}
ts2tr2=atas\Rightarrow \frac{t_{s}^{2}}{t_{r}^{2}}=\frac{a_{t}}{a_{s}}
ts2tr2=gsinθgμcosθgsinθ=1μtanθ\Rightarrow \frac{t_{s}^{2}}{t_{r}^{2}}=\frac{g \sin \theta-g \mu \cos \theta}{g \sin \theta}=1-\mu \tan \theta
t2n2t2=1μtanθ\Rightarrow \frac{t^{2}}{n^{2} t^{2}} =1-\mu \tan \theta
1n2=1μtanθ\Rightarrow \frac{1}{n^{2}}=1-\mu \tan \theta
μtanθ=11n2\Rightarrow \mu \tan \theta=1-\frac{1}{n^{2}}
μ=(11n2)tanθ\Rightarrow \mu=\left(1-\frac{1}{n^{2}}\right) \tan \theta
Now we know θ=45tan45=1\theta=45^{\circ} \Rightarrow \tan 45^{\circ}=1
Therefore,
μ=11n2\mu=1-\frac{1}{n^{2}}