Solveeit Logo

Question

Question: A given mass of gas occupies \[919\text{ }mL\] volume in dry state at \(STP\) Same mass of gas colle...

A given mass of gas occupies 919 mL919\text{ }mL volume in dry state at STPSTP Same mass of gas collected over water at 15C & 750 mm15{}^\circ C\text{ }\And \text{ }750\text{ }mm of pressure occupy volume of 1L1L Calculate vapor pressure of water at 15C15{}^\circ C

Explanation

Solution

We know that at NTPNTP 11 mole of any substance occupy 22400 ml22400\text{ }ml of volume as well as also amount of gas of NTPNTP which will be equal to 1515 degree Celsius as well as 745 mm745\text{ }mm pressure. Thus by using this we can easily answer given questions. The formula for gas equation is given by:
P1×V1T1 = P2×V2T2\dfrac{{{P}_{1}}\times {{V}_{1}}}{{{T}_{1}}}\text{ }=\text{ }\dfrac{{{P}_{2}}\times {{V}_{2}}}{{{T}_{2}}}

Complete step-by-step answer:
We know that NTPNTP means Normal Temperature and Pressure which is also known as STPSTP that is Standard Temperature and Pressure. At given NTPNTP normal temperature is 298 K298\text{ }K along with normal pressure which is 1 atm = 760 mm of Hg1\text{ }atm\text{ }=\text{ }760\text{ }mm\text{ }of\text{ }Hg
Thus, given pressure of the moist gas P = 760 mm of HgP\text{ }=\text{ }760\text{ }mm\text{ }of\text{ }Hg
Pressure of the dry gas NTP Ptotal = 760 mm of HgNTP\text{ }{{P}_{total}}\text{ }=\text{ }760\text{ }mm\text{ }of\text{ }Hg
Volume of the moist gas V1 = 919ml{{V}_{1}}\text{ }=\text{ }919ml
Volume of the dry gas V2 = 100ml{{V}_{2}}\text{ }=\text{ }100ml
Temperature of the moist gas T1 = 273K{{T}_{1}}\text{ }=\text{ }273K
Temperature of the dry gas T2 = 273 + 15 = 288K{{T}_{2}}\text{ }=\text{ }273\text{ }+\text{ }15\text{ }=\text{ }288K
Let pressure of the dry gas be 1515 degree Celsius and since amount of the gases will be of same in both condition and with using gas equation;
P1×V1T1 = P2×V2T2\dfrac{{{P}_{1}}\times {{V}_{1}}}{{{T}_{1}}}\text{ }=\text{ }\dfrac{{{P}_{2}}\times {{V}_{2}}}{{{T}_{2}}}
By substituting the values we get;
760×919273 = P2×1000288\Rightarrow \dfrac{760\times 919}{273}\text{ }=\text{ }\dfrac{{{P}_{2}}\times 1000}{288}
P2 = [(760×919273)×(2881000)]\Rightarrow {{P}_{2}}\text{ }=\text{ }\left[ \left( \dfrac{760\times 919}{273} \right)\times \left( \dfrac{288}{1000} \right) \right]
P2 = 736.82mmHg\Rightarrow {{P}_{2}}\text{ }=\text{ }736.82mmHg

Therefore, we know that Pdry gas = Ptotal  Pwater vapor{{P}_{dry\text{ }gas}}\text{ }=\text{ }{{P}_{total}}\text{ }-\text{ }{{P}_{water\text{ }vapor}}
Pdry gas = Ptotal  Pwater vapor{{P}_{dry\text{ }gas}}\text{ }=\text{ }{{P}_{total}}\text{ }-\text{ }{{P}_{water\text{ }vapor}}
From here we need to find vapor pressure of water which is given by
Pwater vapor = Ptotal  Pdry gas\Rightarrow {{P}_{water\text{ }vapor}}\text{ }=\text{ }{{P}_{total}}\text{ }-\text{ }{{P}_{dry\text{ }gas}}
Pwater vapor = 750  736.82\Rightarrow {{P}_{water\text{ }vapor}}\text{ }=\text{ }750\text{ }-\text{ }736.82
Pwater vapor = 13.18 mm\Rightarrow {{P}_{water\text{ }vapor}}\text{ }=\text{ }13.18\text{ }mm

Therefore, vapor pressure of water at 15C is 13.18mm15{}^\circ C\text{ }is\text{ }13.18mm

Note: Note that we should be remembering that the vapour pressure of water is only affected by temperature as well as it increases with an increase in the temperature. Along with that we should remember vapour pressure doesn't depend on shape as well as size of container which also depend on intermolecular force of attraction.