Solveeit Logo

Question

Question: A girl riding a bicycle with a speed of 5 m s<sup>-1</sup> towards north direction, observes rain fa...

A girl riding a bicycle with a speed of 5 m s-1 towards north direction, observes rain falling vertically down. If she increases her speed to 10 m s-1, rain appears to meet her at 45o45^{o}to the vertical. What is the speed of the rain?

A

52ms15\sqrt{2}ms^{- 1}

B

5ms15ms^{- 1}

C

102ms110\sqrt{2}ms^{- 1}

D

10ms110ms^{- 1}

Answer

52ms15\sqrt{2}ms^{- 1}

Explanation

Solution

Assume north to be i^\widehat{i}directions and vertically upwards to be j^\widehat{j}directions

Let the velocity of rain be

v=ai^+bj^\overrightarrow{v} = a\widehat{i} + b\widehat{j}

In the first case,vg{\overrightarrow{v}}_{g}= velocity of girl = 5i^5\widehat{i}

vgr=vrvg=(ai^+bj^)5i^=(a5)i^+bj^\therefore{\overset{\rightarrow}{v}}_{gr} = {\overset{\rightarrow}{v}}_{r} - {\overset{\rightarrow}{v}}_{g} = (a\widehat{i} + b\widehat{j}) - 5\widehat{i} = (a - 5)\widehat{i} + b\widehat{j}

Since rain appears to fall vertically downwards.

\thereforea – 5 = 0 or a = 5

In the second case

vg=10i^{\overrightarrow{v}}_{g} = 10\widehat{i}

vgr=vr10i^=(ai^+bj^)10i^=(a10)i^+bj^\therefore{\overset{\rightarrow}{v}}_{gr} = {\overset{\rightarrow}{v}}_{r} - 10\widehat{i} = (a\widehat{i} + b\widehat{j}) - 10\widehat{i} = (a - 10)\widehat{i} + b\widehat{j}

=5i^+bj^= - 5\widehat{i} + b\widehat{j}

Since rain appears to fall at 4545{^\circ}with the vertical

\thereforeb = -5

\thereforeThe velocity of the rain isvr=5i^5j^{\overset{\rightarrow}{v}}_{r} = 5\widehat{i} - 5\widehat{j}

Speed of the rain is

vr=(5)2+(5)2=52ms1\left| {\overset{\rightarrow}{v}}_{r} \right| = \sqrt{(5)^{2} + ( - 5)^{2}} = 5\sqrt{2}ms^{- 1}