Solveeit Logo

Question

Question: A general equation of second degree \[a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\] represents a pair of ...

A general equation of second degree ax2+2hxy+by2+2gx+2fy+c=0a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0 represents a pair of straight lines if
1. h2=2ab{{h}^{2}}=2ab
2. h2>2ab{{h}^{2}}>2ab
3. ahg hbf gfc =0\left| \begin{matrix} a & h & g \\\ h & b & f \\\ g & f & c \\\ \end{matrix} \right|=0
4. None of these

Explanation

Solution

At first we take the general equation that is S=ax2+2hxy+by2+2gx+2fy+c=0S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0 which represents a straight line for that we have to consider two line equation l1x + m1y + n1 = 0 {{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}}=~0\text{ }andl2x + m2y + n2 = 0{{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~{{n}_{2~}}=~0. Therefore, (l1x + m1y + n1 )(l2x + m2y + n)=0({{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}})({{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~n)=0 and simplify further in this problem.

Complete step by step answer:
Suppose S=0S=0 represents pair of straight line but there are two line of equation are:
l1x + m1y + n1 =0(1){{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}}=0---(1)
l2x + m2y + n2 = 0(2){{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~{{n}_{2~}}=~0---(2)
It represents a pair of straight line that means
S=(l1x + m1y + n1 )(l2x + m2y + n2)S=({{l}_{1}}x\text{ }+\text{ }{{m}_{1}}y\text{ }+~{{n}_{1~}})({{l}_{2}}x\text{ }+~{{m}_{2}}y\text{ }+~n_2)
By simplifying this above equation we get:
S=l1l2x2+l1 m2xy+l1n2x+l2m1xy+m1m2y2+m1n2y+l2n1 x+m2n1 y + n2n1 S={{l}_{1}}{{l}_{2}}{{x}^{2}}\text{+}{{l}_{1}}~{{m}_{2}}xy+{{l}_{1}}{{n}_{2}}x\text{+}{{l}_{2}}{{m}_{1}}xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}\text{+}{{m}_{1}}{{n}_{2}}y\text{+}{{l}_{2}}{{n}_{1~}}x+{{m}_{2}}{{n}_{1~}}y\text{ }+~{{n}_{2}}{{n}_{1~}}
By rearranging the term we get:
S=l1l2x2+m1m2y2+l1 m2xy+l2m1xy+l1n2x+l2n1 x+m1n2y+m2n1 y+ n2n1 S={{l}_{1}}{{l}_{2}}{{x}^{2}}+{{m}_{1}}{{m}_{2}}{{y}^{2}}+{{l}_{1}}~{{m}_{2}}xy+{{l}_{2}}{{m}_{1}}xy+{{l}_{1}}{{n}_{2}}x+{{l}_{2}}{{n}_{1~}}x+{{m}_{1}}{{n}_{2}}y+{{m}_{2}}{{n}_{1~}}y+~{{n}_{2}}{{n}_{1~}}
By solving further we get:
S=l1l2x2+m1m2y2+(l1 m2+l2m1)xy+(l1n2+l2n1 )x+(m1n2+m2n1 )y+ n2n1 (3)S={{l}_{1}}{{l}_{2}}{{x}^{2}}+{{m}_{1}}{{m}_{2}}{{y}^{2}}+({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}})xy+({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})x+({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})y+~{{n}_{2}}{{n}_{1~}}--(3)
By comparing the general equation that is S=ax2+2hxy+by2+2gx+2fy+cS=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c with equation (3)(3)
We get,
a=l1l2,b=l1l2,2h=l1 m2+l2m1,c=n2n1 ,2g=l1n2+l2n1 ,2f=m1n2+m2n1 a={{l}_{1}}{{l}_{2}},\,\,b={{l}_{1}}{{l}_{2}},\,\,2h={{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}},\,\,c={{n}_{2}}{{n}_{1~}},\,\,2g={{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}},\,\,2f={{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}}
Now, 8fgh8fgh can be written as (2f)(2g)(2h)(2f)(2g)(2h)
8fgh=(2f)(2g)(2h)\therefore 8fgh=(2f)(2g)(2h)
Substitute the value of h, g and f we get;

& 8fgh=({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}}) \\\ & \\\ \end{aligned}$$ After simplifying the bracket we get: $$8fgh={{l}_{1}}{{l}_{2}}({{m}_{1}}^{2}{{n}_{2}}^{2}+{{m}_{2}}^{2}{{n}_{1~}}^{2})+{{m}_{1}}{{m}_{2}}({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1~}}^{2})+{{n}_{1~}}{{n}_{2~}}({{l}_{1}}^{2}~{{m}_{2}}^{2}+{{l}_{2}}^{2}{{m}_{1}}^{2})+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}$$ By arranging the term we get: $$8fgh={{l}_{1}}{{l}_{2}}\left[ ({{m}_{1}}^{2}{{n}_{2}}^{2}+{{m}_{2}}^{2}{{n}_{1~}}^{2}+2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}})-2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+{{m}_{1}}{{m}_{2}}\left[ ({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1~}}^{2}+2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}})-2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+{{n}_{1~}}{{n}_{2~}}\left[ ({{l}_{1}}^{2}~{{m}_{2}}^{2}+{{l}_{2}}^{2}{{m}_{1}}^{2}+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}})-2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}$$ As we know the value of $$a,\,\,b,\,\,c\,\,$$substitute in these equation we get: And apply the formula for $${{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$$ $$8fgh=a\left[ {{({{m}_{1}}{{n}_{2}}+{{m}_{2}}{{n}_{1~}})}^{2}}-2{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+b\left[ {{({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1~}})}^{2}}-2{{l}_{1}}{{l}_{2}}{{n}_{1~}}{{n}_{2~}} \right]+c\left[ {{({{l}_{1}}~{{m}_{2}}+{{l}_{2}}{{m}_{1}})}^{2}}-2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1~}}{{n}_{2~}}$$ By substituting the value of $$h,\,\,f,\,\,g\,\,$$in this above equation: $$8fgh=a(4{{f}^{2}}-2bc)+b(4{{g}^{2}}-2ca)+c(4{{h}^{2}}-2ab)+2abc$$ By simplifying this we get: $$8fgh=4(a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc)$$ Divide by 4 on both sides we get: $$2fgh=a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc$$ By rearranging the term we get: $$2fgh=a{{f}^{2}}+b{{g}^{2}}+c{{h}^{2}}-abc$$ or $$abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$$ If we notice this above equation then it is a determinant of the matrix which is generally it is represented as $$\Delta $$ that is the above equation becomes $$\Delta =0$$ This is the required condition for $$S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$$ represents a straight line $$\Delta =0$$ can also be written as: $$\left| \begin{matrix} a & h & g \\\ h & b & f \\\ g & f & c \\\ \end{matrix} \right|=0$$ Because $$\Delta =\left| \begin{matrix} a & h & g \\\ h & b & f \\\ g & f & c \\\ \end{matrix} \right|=abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$$ **So, the correct answer is “Option 3”.** **Note:** In this particular problem we have to remember that $$S=0$$ only for the equation which represents a pair of straight lines. And its determinant will be 0. So, while simplifying the brackets, don't make silly mistakes. So the above solution is referred for such types of problems.