Solveeit Logo

Question

Question: A gas mixture of \({\text{3litres}}\) of propane and butane on complete combustion at \({\text{2}...

A gas mixture of 3litres{\text{3litres}} of propane and butane on complete combustion at
{\text{2}}{{\text{5}}^{\text{^o }}}{\text{C}} produced 10 litres{\text{10 litres}} of CO2{\text{C}}{{\text{O}}_{\text{2}}}. The gas mixture contains initially:
A. 2 litres C3H3 + 1litre C4H10{\text{2 litres }}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{3}}}{\text{ + 1litre }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}
B. 1litres C3H8 + 2litres C4H10{\text{1litres }}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{ + 2litres }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}
C. 1.5litres C3H8 + 1.5litres C4H10{\text{1}}{\text{.5litres }}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{ + 1}}{\text{.5litres }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}
D. 2.5litres C3H8 + 1.5litres C4H10{\text{2}}{\text{.5litres }}{{\text{C}}_3}{{\text{H}}_8}{\text{ + 1}}{\text{.5litres }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}

Explanation

Solution

As the formula of propane and butane is C3H8{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}} and C4H10{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}} respectively. As it is given that mixture of propane and butane is 3 litres{\text{3 litres}} and if we see the question after combustion CO2{\text{C}}{{\text{O}}_{\text{2}}} formed 10 litres{\text{10 litres}} .

Complete step by step answer: Here, if we make the equation of the given question
C3H8 + O2CO2 + H2O{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{ + }}{{\text{O}}_{\text{2}}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O}}
Balancing the above equation:
C3H8 + 5O23CO2 + 4H2O{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{ + 5}}{{\text{O}}_{\text{2}}} \to 3{\text{C}}{{\text{O}}_{\text{2}}}{\text{ + 4}}{{\text{H}}_{\text{2}}}{\text{O}}
So, our second equation is
C4H10 + O2CO2 + H2O{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{ + }}{{\text{O}}_{\text{2}}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O}}
Balancing this equation also:
C4H10 + 132O24CO2 + 5H2O{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{ + }}\dfrac{{13}}{2}{{\text{O}}_{\text{2}}} \to 4{\text{C}}{{\text{O}}_{\text{2}}}{\text{ + 5}}{{\text{H}}_{\text{2}}}{\text{O}}
Let supposeC3H8 = x{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{ = x}}.
So 1{\text{1}} mole of propane produces 3{\text{3}} moles of CO2{\text{C}}{{\text{O}}_{\text{2}}}
Therefore, x{\text{x}} moles will produce 3x{\text{3x}} moles
C4H10 = y{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{ = y}}
So, 1{\text{1}} mole of butane produces 4{\text{4}} moles of CO2{\text{C}}{{\text{O}}_{\text{2}}}
Therefore,y{\text{y}} moles will produce 4 y{\text{4 y}} moles.
Now if we make the equation of the question:
So, x + y = 3{\text{x + y = 3}}  - - - - - (1){\text{ - - - - - }}\left( {\text{1}} \right) (given)
And
Volume of CO2{\text{C}}{{\text{O}}_{\text{2}}}formed 10 litres{\text{10 litres}}
Therefore, 3x + 4y = 10 - - - - (2){\text{3x + 4y = 10 - - - - }}\left( {\text{2}} \right)
So by solving (1)and(2)\left( {\text{1}} \right){\text{and}}\left( {\text{2}} \right) equations
From (1)\left( {\text{1}} \right) equation, we get x + y = 3{\text{x + y = 3}}
x = 3 - y{\text{x = 3 - y}}  - - - - *{\text{ - - - - *}}
From (2)\left( {\text{2}} \right) equation, 3x + 4y = 10{\text{3x + 4y = 10}}
Putting the value of ’x’{\text{'x'}} in above equation
3(3 - y) + 4y = 10{\text{3}}\left( {{\text{3 - y}}} \right){\text{ + 4y = 10}}
Now solving above equation
9 - 3y + 4y = 10{\text{9 - 3y + 4y = 10}}
y = 1\boxed{{\text{y = 1}}}
Now putting the value of ’y’{\text{'y'}} in  - - - - *{\text{ - - - - *}}
x = 3 - y{\text{x = 3 - y}}
x = 3 - 1{\text{x = 3 - 1}}
x = 2\boxed{{\text{x = 2}}}
By solving the equation, we get x = 2L and y = 1L{\text{x = 2L and y = 1L}}
So, the composition of propane in the gas mixture is 2L{\text{2L}} and butane is1L{\text{1L}}.
So, the correct answer is “Option A”.

Note: volume is directly proportional to number of moles when temperature and pressure are constant.