Solveeit Logo

Question

Question: A gas mixture of \[3{\text{ }}liters\] of propane and butane on complete combustion at \[{25^0}C\] p...

A gas mixture of 3 liters3{\text{ }}liters of propane and butane on complete combustion at 250C{25^0}C produce 10 liters10{\text{ }}liters of CO2C{O_2} initial composition of the propane and butane in the gas mixture is:
A. 66.67%, 33.33%  66.67\% ,{\text{ }}33.33\% \;
B. 33.33%, 66.67%33.33\% ,{\text{ }}66.67\%
C. 50%, 50%50\% ,{\text{ }}50\%
D. 60%, 40%60\% ,{\text{ }}40\%

Explanation

Solution

Combustion reaction to the type of reaction that causes a flame. Combustion is a chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, high-temperature exothermic (heat releasing) redox (oxygen adding) which creates oxidized, often gaseous products in a mixture called smoke.

Complete answer:
As per given gas mixture of 3 liters3{\text{ }}liters of propane and butane on complete combustion, we know the formula of propane and Butane is C3H8 and C4H10{C_3}{H_8}{\text{ }}and{\text{ }}{C_4}{H_{10}} respectively. Now the question is after combustion of CO2C{O_2} formed 10 litres.10{\text{ }}litres.
First, we can make the reaction -
The reactions of propane with oxygen: C3H8  + O2     CO2  + H2O                    {C_3}{H_{8\;}} + {\text{ }}{O_{2\;{\text{ }}}} - \;C{O_2}\; + {\text{ }}{H_2}O\;\;\;\;\;\;\;\;\;\;
Balancing the equation C3H8  + 5O2      3CO2  +4H2O  (1){C_3}{H_{8\;}} + {\text{ }}5{O_{2\;}}\; \to \;3C{O_{2\;}} + 4{H_2}O\; - - - - - - - - - \left( 1 \right)
the reactions of butane with oxygen: C4H10  + O2          H2O +  CO2{C_4}{H_{10}}\; + {\text{ }}{O_2}\;\;\; \to \;\;{H_2}O{\text{ }} + \;C{O_2}
Balancing the equation  C4H10  + (132) O25H2O + 4CO2          (2)\;{C_4}{H_{10}}\; + {\text{ }}\left( {\dfrac{{13}}{2}} \right){\text{ }}{O_2} \to 5{H_2}O{\text{ }} + {\text{ }}4C{O_{2\;}}\;\;\;\; - - - - - - - - - \left( 2 \right)
Let suppose C3H8=Xmoles{C_3}{H_8} = X\, moles and C4H10=Ymoles{C_4}{H_{10}} = Y\, moles
As per reaction of propane C3H8  + 5O2      3CO2  +4H2O  (1){C_3}{H_{8\;}} + {\text{ }}5{O_{2\;}}\; \to \;3C{O_{2\;}} + 4{H_2}O\; - - - - - - - - - \left( 1 \right)
so one mole of propane produces =  3\;3 moles ofCO2C{O_2} .
X\therefore X Moles of propane produce = 3X3X moles of CO2C{O_2}
As per reaction of butane   C4H10  + (132) O25H2O + 4CO2          (2)\;{C_4}{H_{10}}\; + {\text{ }}\left( {\dfrac{{13}}{2}} \right){\text{ }}{O_2} \to 5{H_2}O{\text{ }} + {\text{ }}4C{O_{2\;}}\;\;\;\; - - - - - - - - - \left( 2 \right)
So one mole of Butane produces =44 moles ofCO2C{O_2}
Y  \therefore Y\; moles of Butane produce = 4Y4Y moles of CO2C{O_2}
Now X+Y =3    (3)X + Y{\text{ }} = 3\;\; - - - - - - - \left( 3 \right) Given,
So, 3X +4Y = 10  (4)3X{\text{ }} + 4Y{\text{ }} = {\text{ }}10\; - - - - - - - \left( 4 \right)   \;\therefore Given Volume of CO2  =10 litres                                  C{O_2}\; = 10{\text{ }}litres\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;
Solving equation (3) and (4)
X+Y =3    (3)X + Y{\text{ }} = 3\;\; - - - - - - - \left( 3 \right)
X= 3Y\Rightarrow X = {\text{ }}3 - Y
From equation 3X +4Y = 10  (4)3X{\text{ }} + 4Y{\text{ }} = {\text{ }}10\; - - - - - - - \left( 4 \right)
Putting the value of XX in equation(4)\left( 4 \right)
3(3Y)+4Y= 10\Rightarrow 3\left( {3 - Y} \right) + 4Y = {\text{ }}10
By solving, Y=1,Y = 1, now putting the value of YY in equation (3)\left( 3 \right) we get, X= 2X = {\text{ }}2
So, the composition of propane in gas mixture is 2L2\,L and butane is 1L.1\,L.
\thereforeVolume of propane = 2L.2\,L.
\thereforeVolume of butane = 1L.1\,L.
Percentage of propane = Volume of propanetotal gas mixture volume×100\dfrac{{Volume{\text{ }}of{\text{ }}propane}}{{total{\text{ }}gas{\text{ }}mixture{\text{ }}volume}} \times 100 = 21+2×100=66.67%\dfrac{2}{{1 + 2}} \times 100 = 66.67\%
Percentage of butane = Volume of butanetotal gas mixture volume×100{\text{ }}\dfrac{{Volume{\text{ }}of{\text{ }}butane}}{{total{\text{ }}gas{\text{ }}mixture{\text{ }}volume}} \times 100 = 11+2×100=33.33%\dfrac{1}{{1 + 2}} \times 100 = 33.33\%

**So the option (A) is correct

Note:**
Combustion reaction is an exothermic reaction in the form of heat and light that releases energy. This releases the full amount of energy from the fuel being reacted when a gas undergoes complete combustion.