Solveeit Logo

Question

Question: A gas filled freely collapsible balloon is pushed from the surface level of a lake to a depth of \(5...

A gas filled freely collapsible balloon is pushed from the surface level of a lake to a depth of 50 m50{\text{ m}}. Approximately what percent of its original volume will the balloon finally have, assuming that the gas behaves ideally and temperature is the same at the surface and at 50 m50{\text{ m}} depth?

Explanation

Solution

A gas filled freely collapsible balloon means that if pressure is applied to the balloon the balloon will shrink in its volume. When a balloon is pushed from the surface level, the pressure on the balloon increases as the balloon goes down and as a result the balloon shrinks in its volume. The gas filled inside the balloon behaves ideally and thus, Boyle’s law can be applied.

Complete step by step answer:
Step 1:
Calculate the pressure on the balloon at the surface level as follows:
Let the volume of the balloon at the surface level be Vsurface{V_{{\text{surface}}}}.
The pressure on the balloon at the surface level is equal to the atmospheric pressure. Thus,
Psurface=1 atm=1013×105 N m2{P_{{\text{surface}}}} = 1{\text{ atm}} = 1 \cdot 013 \times {10^5}{\text{ N }}{{\text{m}}^{ - 2}}.
Step 2:
Calculate the pressure on the balloon at the depth of 50 m50{\text{ m}} as follows:
Let the volume of the balloon at the depth of 50 m50{\text{ m}} be V50 m{V_{50{\text{ m}}}}.
The pressure on the balloon at the depth of 50 m50{\text{ m}} is,
P50 m=Psurface+Pwater{P_{50{\text{ m}}}} = {P_{{\text{surface}}}} + {P_{{\text{water}}}}
P50 m=Psurface+hρg{P_{50{\text{ m}}}} = {P_{{\text{surface}}}} + h\rho g
Where, hh is the depth,
ρ\rho is the density of water,
gg is the acceleration due to gravity.
Substitute 50 m50{\text{ m}} for the depth, 1000 kg m31000{\text{ kg }}{{\text{m}}^{ - 3}}for the density of water, 98 N kg19 \cdot 8{\text{ N k}}{{\text{g}}^{ - 1}} for the acceleration due to gravity. Thus,
P50 m=1013×105 N m2+50 m×1000 kg m3×98 N kg1{P_{50{\text{ m}}}} = 1 \cdot 013 \times {10^5}{\text{ N }}{{\text{m}}^{ - 2}} + 50{\text{ m}} \times 1000{\text{ kg }}{{\text{m}}^{ - 3}} \times 9 \cdot 8{\text{ N k}}{{\text{g}}^{ - 1}}
P50 m=591300 N m2{P_{50{\text{ m}}}} = 591300{\text{ N }}{{\text{m}}^{ - 2}}
Thus, the pressure on the balloon at the depth of 50 m50{\text{ m}} is 591300 N m2591300{\text{ N }}{{\text{m}}^{ - 2}}.
Step 3:
Calculate what percent of its original volume will the balloon finally have as follows:
The gas filled in the balloon behaves as an ideal gas. Thus, Boyle’s law is applicable. Thus,
PsurfaceVsurface=P50 mV50 m{P_{{\text{surface}}}}{V_{{\text{surface}}}} = {P_{{\text{50 m}}}}{V_{{\text{50 m}}}}
Thus,
1013×105 N m2×Vsurface=591300 N m2×V50 m1 \cdot 013 \times {10^5}{\text{ N }}{{\text{m}}^{ - 2}} \times {V_{{\text{surface}}}} = 591300{\text{ N }}{{\text{m}}^{ - 2}} \times {V_{{\text{50 m}}}}
V50 mVsurface=1013×105 ̸m2591300 ̸m2\dfrac{{{V_{{\text{50 m}}}}}}{{{V_{{\text{surface}}}}}} = \dfrac{{1 \cdot 013 \times {{10}^5}{\text{ }}\not{{{\text{N }}{{\text{m}}^{ - 2}}}}}}{{591300{\text{ }}\not{{{\text{N }}{{\text{m}}^{ - 2}}}}}}
V50 mVsurface%=01713×100%\dfrac{{{V_{{\text{50 m}}}}}}{{{V_{{\text{surface}}}}}}\% = 0 \cdot 1713 \times 100\%
V50 mVsurface%=1713%\dfrac{{{V_{{\text{50 m}}}}}}{{{V_{{\text{surface}}}}}}\% = 17 \cdot 13\%
Thus, the balloon will have 17%17\% of its original volume.

Note:
The gas filled inside the balloon behaves as an ideal gas. Thus, Boyle’s law is applicable. Boyle’s law states that the pressure of gas varies inversely with its volume at a constant temperature.