Solveeit Logo

Question

Physics Question on Units and measurement

A gas bubble formed from an explosion under water oscillates with a period TT proportional to PadbEcP^{a} d^{b} E^{c}, where PP is pressure, dd is the density of water and EE is the total energy of explosion. The value of a,b,ca, b, c are

A

a=1b=1,c=2a=1\,b=1,\,c=2

B

a=1,b=2,c=1a=1,\,b=2,\,c=1

C

a=56,b=12,c=13a=\frac{5}{6}, b=\frac{1}{2},c=\frac{1}{3}

D

a=56,b=12,c=13a=-\frac{5}{6},b=\frac{1}{2},c=\frac{1}{3}

Answer

a=56,b=12,c=13a=-\frac{5}{6},b=\frac{1}{2},c=\frac{1}{3}

Explanation

Solution

Every equation relating Physical quantities should be in dimensional balance.
Given TpadbEcT \propto p^{a} d^{b} E^{c}
Since, only similar quantities can be equated, therefore dimensions of the terms on both sides of the equation must be same.
Hence, we have Dimensions of =[MoLoT1]=\left[M^{o} L^{o} T^{1}\right]
Dimensions of pressure P=[ML1T2]P=\left[M L^{-1} T^{-2}\right]
Dimensions of density d=[ML3]d=\left[M L^{-3}\right]
Dimensions of energy E=[ML2T2]E=\left[M L^{2} T^{-2}\right]
\therefore We have
[MoLoT1]=k[ML1T2]a[ML3]b[ML2T2]c\left[M^{o} L^{o} T^{1}\right]=k\left[M L^{-1} T^{-2}\right]^{a}\left[M L^{-3}\right]^{b}\left[M L^{2} T^{-2}\right]^{c}
where, kk is a constant.
Comparing dimensions of similar terms, we have
[MoLoT1]=k[Ma+b+cLa3b+2cT2a2c]\left[M^{o} L^{o} T^{1}\right]=k\left[M^{a+b+c} L^{-a-3 b+2 c} T^{-2 a-2 c}\right]
Comparing powers of MM, we have 0=a+b+c0=a+b+c \,\,\,\ldots(i)
Comparing powers of LL, we have 0=a3b+2c0=-a-3 b+2 c \,\,\,\ldots(ii)
Comparing powers of TT, we have 1=2a2c1=-2 a-2 c \,\,\,\ldots(iii)
Solving Eqs. (i), (ii) and (iii), we have
a=56,b=12,c=13a=-\frac{5}{6}, b=\frac{1}{2}, c=\frac{1}{3}