Solveeit Logo

Question

Question: A galvanometer with its coil resistance 25 requires a current of 1 mA for its full deflection. In or...

A galvanometer with its coil resistance 25 requires a current of 1 mA for its full deflection. In order to construct an ammeter to read up to a current of 2 A, the approximate value of the shunt resistance should be

Explanation

Solution

Let G be the resistance of the galvanometer and ig{i_g} be the current for full scale deflection in the galvanometer, the value of the shunt resistance, S required to convert the galvanometer into an ammeter of 0 to i ampere is,
S=G×igiigS = \dfrac{{G \times {i_g}}}{{i - {i_g}}}.

Complete step by step answer:
Given the resistance of the galvanometer, G=25Ω= 25\Omega.
Desired current, i=2A = 2A.
Full scale deflection current, ig=1mA{i_g} = 1mA.
To convert a galvanometer into ammeter shunt resistance ‘S’ is added in parallel to the galvanometer.
The value of the shunt resistance is given as, S=G×igiigS = \dfrac{{G \times {i_g}}}{{i - {i_g}}}.
Substituting the values of G, i and ig{i_g} we get,
S=25×0.001(20.001)=0.0251.999=0.0125=1.25×102ΩS = \dfrac{{25 \times 0.001}}{{(2 - 0.001)}} = \dfrac{{0.025}}{{1.999}} = 0.0125 = 1.25 \times {10^{ - 2}}\Omega

Therefore the value of shunt resistance is 1.25×1021.25 \times {10^{ - 2}}.

Additional information:
Galvanometer is a device which is used to measure electric currents. But it is a sensitive device that cannot be used to measure heavy currents. So we connect a resistor in parallel to the galvanometer to measure heavy currents and it is called an Ammeter. The effective resistance when connected in parallel is low.

Note: A galvanometer can detect only small currents. Thus, to measure large currents it is converted into an ammeter. It can be converted into an ammeter by connecting a low resistance called shunt resistance in parallel to the galvanometer. This shunt prevents the galvanometer from damage as it is a sensitive device.