Solveeit Logo

Question

Physics Question on Electrical Instruments

A galvanometer of resistance 50 Ω is connected to the battery of 3 V along with a resistance 2950 Ω in series. A full scale deflections of 30 divisions is obtained in galvanometer. In order to reduce this deflections to 20 division, the resistance in series should be

A

5050 Ω

B

6050 Ω

C

4450 Ω

D

5550 Ω

Answer

4450 Ω

Explanation

Solution

Let's calculate the current for the full-scale deflection:
I1=VRgal+RseriesI_1 = \frac{V}{R_{\text{gal}} + R_{\text{series}}}

I1=3V50Ω+2950ΩI_1 = \frac{3V}{50\Omega + 2950\Omega}

I1=3V3000ΩI_1 = \frac{3V}{3000\Omega}
I1=0.001AI_1 = 0.001\, \text{A}
Now, let's calculate the current required for a 20 division deflection:
I2=23I1I_2 = \frac{2}{3} \cdot I_1

I2=23×0.001AI_2 = \frac{2}{3} \times 0.001 \, \text{A}
I2=0.000667AI_2 = 0.000667 \, \text{A}
To find the resistance needed, we can use Ohm's law:
V=IRV = I \cdot R
For the 20 division deflection:
0.000667A×(50Ω+R)=3V0.000667\, \text{A} \times (50\,\Omega + R) = 3\, \text{V}
Solving this equation for R, we get:
0.000667A×R=3V0.000667A×50Ω0.000667\, \text{A} \times R = 3\, \text{V} - 0.000667\, \text{A} \times 50\,\Omega

R=3V0.000667A×50Ω0.000667AR = \frac{{3\, \text{V} - 0.000667\, \text{A} \times 50\,\Omega}}{{0.000667\, \text{A}}}
Calculating this expression gives:
R4,449.25ΩR ≈ 4,449.25 Ω
Rounding this value, we get 4,450 Ω.