Solveeit Logo

Question

Physics Question on Resistance

A galvanometer has a resistance G and a current flowing in it produces full scale deflection. S1S_1 is the value of the shunt, which converts it into an ammeter of range 0I0-I and S2S_2 is the value of the shunt for the range 02I0-2I. The ratio is

A

2

B

1

C

\frac{S_1}{S_2}$$=$$\begin{pmatrix}\frac{2I-I_g}{I-I_g}\end{pmatrix}

D

\frac{S_1}{S_2}$$=$$\frac{1}{2}$$\begin{pmatrix}\frac{I-I_g}{2I-I_g}\end{pmatrix}

Answer

\frac{S_1}{S_2}$$=$$\begin{pmatrix}\frac{2I-I_g}{I-I_g}\end{pmatrix}

Explanation

Solution

The correct answer is C:S1S2=(2IIg)(IIg)\frac{S_1}{S_2} = \frac{(2I - I_g)}{(I - I_g)}
Using S = IgG/(IIg)I_g G/(I - I_g)
Using the above equation;
S1=igG(Iig)S_1=\frac{i_gG}{(I-i_g)}
S2=igG(2Iig)S_2=\frac{i_gG}{(2I-i_g)}
we get S1S2=(2IIg)(IIg)\frac{S_1}{S_2} = \frac{(2I - I_g)}{(I - I_g)}
This is the proper form of the given expressions and their ratio.