Solveeit Logo

Question

Chemistry Question on Equilibrium

A(g)+3B(g)4C(g)A(g)+3B(g)4C(g) Initially concentration of AA is equal to that of BB . The equilibrium concentrations of AA and CC are equal. Kc{{K}_{c}} is:

A

0.08

B

0.8

C

8

D

80

Answer

8

Explanation

Solution

A(g)1 (1x)+3B(g)1 (13x)4C(g)0 4x(initial concentration) (final concentration)\underset{\begin{smallmatrix} \,\,\,\,\,1 \\\ (1-x) \end{smallmatrix}}{\mathop{A(g)}}\,+\underset{\begin{smallmatrix} \,\,\,\,\,1 \\\ (1-3x) \end{smallmatrix}}{\mathop{3B(g)}}\,\underset{\begin{smallmatrix} 0 \\\ 4x \end{smallmatrix}}{\mathop{4C(g)}}\,\underset{\begin{smallmatrix} (initial\text{ }concentration) \\\ (final\text{ }concentration) \end{smallmatrix}}{\mathop{{}}}\, (at equilibrium)
According to question, 1x=4x1-x=4x \therefore x=15x=\frac{1}{5}
For above reaction Kc=[C]4[A][B]3=(4x)4(1x)(13x)3{{K}_{c}}=\frac{{{[C]}^{4}}}{[A]{{[B]}^{3}}}=\frac{{{(4x)}^{4}}}{(1-x){{(1-3x)}^{3}}} Kc=(4×15)4(115)(13×15)3=8.0{{K}_{c}}=\frac{{{\left( 4\times \frac{1}{5} \right)}^{4}}}{\left( 1-\frac{1}{5} \right){{\left( 1-3\times \frac{1}{5} \right)}^{3}}}=8.0