Solveeit Logo

Question

Mathematics Question on Differential equations

A function y=f(x)y=f(x) satisfiesf(x)sin2x+sinx(1+cos2x)f(x)=0f (x)sin2x+sinx-(1+cos^2x) f'(x)=0 with conditionf(0)=0f(0)=0.Thenf(π2)f(\frac{\pi}{2}) equals to

A

1

B

0

C

-1

D

2

Answer

1

Explanation

Solution

Step 1: Rewrite the Differential Equation

dydx(sin2x1+cos2x)y=sinx\frac{dy}{dx} - \left( \frac{\sin 2x}{1 + \cos^2 x} \right) y = \sin x

Step 2: Find the Integrating Factor (I.F.)

The integrating factor is:

I.F. = 1+cos2x1 + \cos^2 x

Step 3: Solve the Differential Equation

Multiply through by the integrating factor:

y(1+cos2x)=(sinx)dxy \cdot (1 + \cos^2 x) = \int (\sin x) dx

Integrate:

y(1+cos2x)=cosx+Cy \cdot (1 + \cos^2 x) = -\cos x + C

Step 4: Apply Initial Condition f(0)=0f(0) = 0

At x=0x = 0:

cos0+C=0C=1-\cos 0 + C = 0 \Rightarrow C = 1

Step 5: Evaluate y(π2)y \left( \frac{\pi}{2} \right)

y(π2)=1y \left( \frac{\pi}{2} \right) = 1

So, the correct answer is: 1