Solveeit Logo

Question

Question: A function f: R→R has property $f(x + y) = f(x)·e^{f(y)-1}$, for every x, y ∈ R then positive value ...

A function f: R→R has property f(x+y)=f(x)ef(y)1f(x + y) = f(x)·e^{f(y)-1}, for every x, y ∈ R then positive value of f (4)

A

1

B

2

C

4

D

8

Answer

1

Explanation

Solution

We are given f(x+y)=f(x)ef(y)1x,yR.f(x+y) = f(x) \cdot e^{f(y)-1} \quad \forall x,y\in\mathbb{R}.

  1. Find f(0)f(0):

Set y=0y=0: f(x+0)=f(x)ef(0)1f(x)=f(x)ef(0)1.f(x+0)=f(x) \cdot e^{f(0)-1}\quad\Rightarrow\quad f(x) = f(x) \cdot e^{f(0)-1}.

For nonzero f(x)f(x), ef(0)1=1f(0)1=0f(0)=1.e^{f(0)-1} = 1 \quad\Rightarrow\quad f(0)-1=0 \quad\Rightarrow\quad f(0)=1.

  1. Obtain an equation for f(y)f(y):

Set x=0x=0: f(y)=f(0)ef(y)1=ef(y)1.f(y)=f(0) \cdot e^{f(y)-1}=e^{f(y)-1}.

Let u=f(y)u = f(y). Thus, u=eu1.u = e^{u-1}.

Taking the natural logarithm (when u>0u>0) we have lnu=u1.\ln u = u-1.

It is easy to verify that u=1u=1 is a solution because ln1=0and11=0.\ln 1 = 0 \quad \text{and} \quad 1-1 = 0.

Since this holds for every yy, we conclude that f(y)=1yR.f(y)=1 \quad \forall y\in\mathbb{R}.

Therefore, f(4)=1.f(4)=1.