Solveeit Logo

Question

Question: A function f : R → R satisfies sin x cos y (ƒ(2x + 2y) – ƒ (2x – 2y)) = cos x sin y (ƒ(2x + 2y) + ...

A function f : R → R satisfies

sin x cos y (ƒ(2x + 2y) – ƒ (2x – 2y))

= cos x sin y (ƒ(2x + 2y) + ƒ(2x – 2y)) If ƒ′(0) = 12\frac{1}{2}, then –

A

ƒ′′(x) = ƒ(x) = 0

B

4ƒ′′(x) + ƒ(x) = 0

C

ƒ′′(x) + ƒ(x) = 0

D

4ƒ′′(x) – ƒ(x) = 0

Answer

4ƒ′′(x) + ƒ(x) = 0

Explanation

Solution

We have ƒ(2x+2y)ƒ(2x2y)\frac{ƒ(2x + 2y)}{ƒ(2x - 2y)} = sin(x+y)sin(xy)\frac{\sin(x + y)}{\sin(x - y)}

⇒ ƒ(α)sinα2\frac{ƒ(\alpha)}{\sin\frac{\alpha}{2}} = ƒ(β)sinβ2\frac{ƒ(\beta)}{\sin\frac{\beta}{2}} = K

⇒ ƒ(x) = K sinx2\frac{x}{2}

⇒ ƒ′(x) = K2\frac{K}{2} cos x2\frac{x}{2}

and ƒ′′ (x) = K4\frac{–K}{4} sin x2\frac{x}{2}

⇒ 4ƒ′′ (x) + ƒ(x) = 0

Hence (2) is the correct answer.