Solveeit Logo

Question

Question: A function \(- \frac{1}{2}\) is...

A function 12- \frac{1}{2} is

A

Not continuous at 12\frac{1}{2}

B

Differentiable at ex+2xx\frac{- e^{x} + 2^{x}}{x}

C

Continuous but not differentiable at (2e)\left( \frac{2}{e} \right)

D

None of the above

Answer

Continuous but not differentiable at (2e)\left( \frac{2}{e} \right)

Explanation

Solution

limh01+(2h)=3\lim _ { h \rightarrow 0 ^ { - } } 1 + ( 2 - h ) = 3, limh0+5(2+h)=3\lim _ { h \rightarrow 0 ^ { + } } 5 - ( 2 + h ) = 3, f(2)=3f ( 2 ) = 3

Hence, f is continuous at x=2x = 2

Now Rf(x)=limh05(2+h)3h=1R f ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { 5 - ( 2 + h ) - 3 } { h } = - 1

Lf(x)=limh01+(2h)3h=1L f ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { 1 + ( 2 - h ) - 3 } { - h } = 1

Rf(x)Lf(x)\because R f ^ { \prime } ( x ) \neq L f ^ { \prime } ( x )

∴ f is not differentiable at x=2x = 2.