Solveeit Logo

Question

Question: A frictionless wire AB is fixed on a sphere of radius R. A very small spherical ball slips on this w...

A frictionless wire AB is fixed on a sphere of radius R. A very small spherical ball slips on this wire. The time taken by this ball to slip from A to B is

A

2gRgcosθ\frac{2\sqrt{gR}}{g\cos\theta}

B

2gR.cosθg2\sqrt{gR}.\frac{\cos\theta}{g}

C

2Rg2\sqrt{\frac{R}{g}}

D

gRgcosθ\frac{gR}{\sqrt{g\cos\theta}}

Answer

2Rg2\sqrt{\frac{R}{g}}

Explanation

Solution

Acceleration of body along AB is gcosθg\cos\theta

Distance travelled in time t sec =AB=12(gcosθ)t2AB = \frac{1}{2}(g\cos\theta)t^{2}

FromΔABC,6muAB=2Rcosθ;6mu2Rcosθ=12gcosθt2\Delta ABC,\mspace{6mu} AB = 2R\cos\theta;\mspace{6mu} 2R\cos\theta = \frac{1}{2}g\cos\theta t^{2}

t2=4Rgt^{2} = \frac{4R}{g}or t=2Rgt = 2\sqrt{\frac{R}{g}}