Solveeit Logo

Question

Physics Question on Motion in a straight line

A frictionless wire ABA B is fixed on a sphere of radius RR. A very small spherical ball slips on this wire. The time taken by this ball to slip from AA to BB is

A

2gRgcosθ\frac{\sqrt{2gR}}{g\:cos\:\theta }\:

B

2gR.cosθg\:2\sqrt{gR\:.}\:\frac{cos\:\theta }{g}

C

2Rg\:2\sqrt{\frac{R}{g}}

D

gRgcosθ\:\frac{gR}{\sqrt{g\:cos\:\theta }}

Answer

2Rg\:2\sqrt{\frac{R}{g}}

Explanation

Solution

Acceleration of body along ABAB is gcosθg \cos \theta Distance travelled in time tsec=AB=12(gcosθ)t2t \,sec = AB =\frac{1}{2}( g \cos \theta) t ^{2} From ABC,AB=2Rcosθ\triangle ABC , AB =2 R \cos \theta Thus, 2Rcosθ=12gcosθt22 R \cos \theta=\frac{1}{2} g \cos \theta t^{2} t2=4Rgt=2Rg\Rightarrow t^{2}=\frac{4 R}{g} \Rightarrow t=2 \sqrt{\frac{R}{g}}