Solveeit Logo

Question

Physics Question on Atoms

A free hydrogen atom after absorbing a photon of wavelength λa\lambda_{_a} gets excited from the state n = 1 to the state n = 4. Immediately after that the electron jumps to n = m state by emitting a photon of wavelength λe.\lambda_{_e}. Let the change in momentum of atom due to the absorption and the emission are ?p and ?p , respectively. If λa/λe=15\lambda_{a}/\lambda_{e}=\frac{1}{5} . Which of the option(s) is/are correct ? [Use hc = 1242 eV nm; 1 nm = 10 m, h and c are Planck's constant and speed of light, respectively]

A

λe\lambda_{_e} = 418 nm

B

The ratio of kinetic energy of the electron in the state n = m to the state n = 1 is 14\frac{1}{4}

C

m = 2

D

ΔPa/ΔPe=12\Delta P_{a}/\Delta P_{e}=\frac{1}{2}

Answer

m = 2

Explanation

Solution

hcλa=13.6[11142]...(i)\frac{hc}{\lambda_{a}} = 13.6\left[\frac{1}{1}-\frac{1}{4^{2}}\right]\quad...\left(i\right)
hcλe=13.6[1m2142]...(ii)\frac{hc}{\lambda_{e}} = 13.6\left[\frac{1}{m^{2}}-\frac{1}{4^{2}}\right]\quad...\left(ii\right)
(ii) / (i) , we get
λaλe=[1m2116][1116]=15\frac{\lambda_{a}}{\lambda_{e}} = \frac{\left[\frac{1}{m^{2}}-\frac{1}{16}\right]}{\left[1-\frac{1}{16}\right]} = \frac{1}{5}
1m2116=1516×15\Rightarrow\, \frac{1}{m^{2}}-\frac{1}{16} = \frac{15}{16}\times\frac{1}{5}
1m2116=316\Rightarrow\, \frac{1}{m^{2}}-\frac{1}{16} = \frac{3}{16}
1m2=316+116\Rightarrow\, \frac{1}{m^{2}} = \frac{3}{16}+\frac{1}{16}
m=2\Rightarrow\quad m = 2
from (ii)
hcλe=13.6[122142]=13.6×316ev\frac{hc}{\lambda_{e}} = 13.6\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right] = 13.6\times\frac{3}{16}ev
λe=12400×1613.6×3?\Rightarrow\quad\lambda_{e} = \frac{12400\times16}{13.6\times3}?
λe4862?\Rightarrow\quad\lambda_{e} \approx 4862 ?
we have KEnz2n2KE_{n} \,\,\propto \frac{z^{2}}{n^{2}}
KE2KE1=14\Rightarrow\, \frac{KE_{2}}{KE_{1}} = \frac{1}{4}
ΔPa=hλa\Delta P_{a} = \frac{h}{\lambda_{a}}
ΔPe=hλe\Delta P_{e} = \frac{h}{\lambda _{e}}
ΔPaΔPe=λeλa\Rightarrow\quad \frac{\Delta P_{a}}{\Delta P_{e}} = \frac{\lambda_{e}}{\lambda_{a}}