Solveeit Logo

Question

Question: A fractional change in volume of oil is 1 percent when a pressure of \(2 \times {10^7}{\text{N}}{{\t...

A fractional change in volume of oil is 1 percent when a pressure of 2×107Nm - 22 \times {10^7}{\text{N}}{{\text{m}}^{{\text{ - 2}}}} is applied calculate the bulk modulus and its compressibility:
A) 3×108Nm - 2,0.33×109m2N13 \times {10^8}{\text{N}}{{\text{m}}^{{\text{ - 2}}}},\,\,\,\,0.33 \times {10^{ - 9\,}}\,{m^2}{N^{ - 1}}
B) 5×109Nm - 2,2×1010m2N15 \times {10^9}{\text{N}}{{\text{m}}^{{\text{ - 2}}}},\,\,\,\,2 \times {10^{ - 10\,}}\,{m^2}{N^{ - 1}}
C) 2×109Nm - 2,5×1010m2N12 \times {10^9}\,{\text{N}}{{\text{m}}^{{\text{ - 2}}}},\,\,\,\,5 \times {10^{ - 10}}\,{m^2}{N^{ - 1}}
D) 2×109Nm - 2,5×109m2N12 \times {10^9}\,{\text{N}}{{\text{m}}^{{\text{ - 2}}}},\,\,\,\,5 \times {10^{ - 9\,}}\,{m^2}{N^{ - 1}}

Explanation

Solution

Hint Use the formula B=PVVB = \dfrac{P}{{\dfrac{{\partial V}}{V}}} to find the bulk modulus. Also use the formula C=1BC = \dfrac{1}{B} to find compressibility.

Complete step-by-step answer:
Given that the fractional change in volume of oil is 1%.
Fractional change in volume = changeinvolumeoriginalvolume\dfrac{{{\text{change}}\,{\text{in}}\,{\text{volume}}}}{{{\text{original}}\,{\text{volume}}}}.
Or, VV=1%=1100=0.01\dfrac{{\partial V}}{V} = 1\% = \dfrac{1}{{100}} = 0.01
Also given that the pressure of 2×107Nm - 22 \times {10^7}{\text{N}}{{\text{m}}^{{\text{ - 2}}}} is applied.
Hence, P = 2×107Nm - 22 \times {10^7}{\text{N}}{{\text{m}}^{{\text{ - 2}}}}
We need to find the bulk modulus; which is given by the following formula:
B=PVV 2×1070.01 2×109Nm2  B = \dfrac{P}{{\dfrac{{\partial V}}{V}}} \\\ \Rightarrow \dfrac{{2 \times {{10}^7}}}{{0.01}} \\\ \Rightarrow 2 \times {10^9}N{m^{ - 2}} \\\ (Putting the values given in the question , we have )
Hence bulk modulus = 2×109Nm - 22 \times {10^9}\,{\text{N}}{{\text{m}}^{{\text{ - 2}}}}.
Now, to find compressibility we use the formula,
C=1BC = \dfrac{1}{B} (Where C is the compressibility and B is the bulk modulus)
Putting the values we have,
C=12×109 C=5×1010m2N - 1  C = \dfrac{1}{{2 \times {{10}^9}}} \\\ \Rightarrow C = 5 \times {10^{ - 10}}\,{{\text{m}}^{\text{2}}}{{\text{N}}^{{\text{ - 1}}}} \\\
Hence the compressibility is C=5×1010m2N - 1C = 5 \times {10^{ - 10}}\,{{\text{m}}^{\text{2}}}{{\text{N}}^{{\text{ - 1}}}}.

Hence option C is the correct Answer.

Note i) Bulk modulus shows the rigidity of the solid. It shows how much resistance a substance is to compression.
ii) Bulk modulus of Adiabatic process =   γP\;\gamma P (Where γ\gamma is the adiabatic constant of adiabatic process and p = pressure))
iii) Bulk modulus of Isothermal process = P ( Where P = pressure)