Solveeit Logo

Question

Question: Principal solutions of the equation $sin2x + cos2x = 0$, where $\pi < x < 2\pi$ are,...

Principal solutions of the equation sin2x+cos2x=0sin2x + cos2x = 0, where π<x<2π\pi < x < 2\pi are,

A

7π8,11π8\frac{7\pi}{8}, \frac{11\pi}{8}

B

9π8,13π8\frac{9\pi}{8}, \frac{13\pi}{8}

C

11π8,15π8\frac{11\pi}{8}, \frac{15\pi}{8}

D

15π8,19π8\frac{15\pi}{8}, \frac{19\pi}{8}

Answer

11π8,15π8\frac{11\pi}{8}, \frac{15\pi}{8}

Explanation

Solution

We start with the equation:

sin2x+cos2x=0\sin2x + \cos2x = 0

This can be rearranged as:

sin2x=cos2x    tan2x=1(cos2x0)\sin2x = -\cos2x \implies \tan2x = -1 \quad (\cos2x \neq 0)

Thus, the general solution for 2x2x is:

2x=π4+kπ,kZ2x = -\frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z}

Therefore,

x=π8+kπ2x = -\frac{\pi}{8} + \frac{k\pi}{2}

Now, we need to determine values of kk such that:

π<x<2π\pi < x < 2\pi

For k=3k=3:

x=π8+3π2=π8+12π8=11π8x = -\frac{\pi}{8} + \frac{3\pi}{2} = -\frac{\pi}{8} + \frac{12\pi}{8} = \frac{11\pi}{8}

For k=4k=4:

x=π8+4π2=π8+16π8=15π8x = -\frac{\pi}{8} + \frac{4\pi}{2} = -\frac{\pi}{8} + \frac{16\pi}{8} = \frac{15\pi}{8}

These values lie in the required interval.