Solveeit Logo

Question

Question: The value of $\sin^{-1}(\frac{12}{13})-\sin^{-1}(\frac{3}{5})$ is equal to...

The value of sin1(1213)sin1(35)\sin^{-1}(\frac{12}{13})-\sin^{-1}(\frac{3}{5}) is equal to

A

πsin1(6365)\pi-\sin^{-1}(\frac{63}{65})

B

π2sin1(5665)\frac{\pi}{2}-\sin^{-1}(\frac{56}{65})

C

π2cos1(965)\frac{\pi}{2}-\cos^{-1}(\frac{9}{65})

D

πcos1(3365)\pi-\cos^{-1}(\frac{33}{65})

Answer

Option b) π2sin1(5665)\frac{\pi}{2}-\sin^{-1}\left(\frac{56}{65}\right)

Explanation

Solution

Let

A=sin1(1213)andB=sin1(35).A = \sin^{-1}\left(\frac{12}{13}\right) \quad \text{and} \quad B = \sin^{-1}\left(\frac{3}{5}\right).

Then

sinA=1213,cosA=1(1213)2=513,\sin A=\frac{12}{13},\quad \cos A=\sqrt{1-\left(\frac{12}{13}\right)^2}=\frac{5}{13}, sinB=35,cosB=1(35)2=45.\sin B=\frac{3}{5},\quad \cos B=\sqrt{1-\left(\frac{3}{5}\right)^2}=\frac{4}{5}.

Using the sine difference formula:

sin(AB)=sinAcosBcosAsinB=12134551335=48651565=3365.\sin(A-B)=\sin A\cos B-\cos A\sin B=\frac{12}{13}\cdot\frac{4}{5}-\frac{5}{13}\cdot\frac{3}{5}=\frac{48}{65}-\frac{15}{65}=\frac{33}{65}.

Since ABA-B is in the principal range [π2,π2][-\frac{\pi}{2},\frac{\pi}{2}], we have:

AB=sin1(3365).A-B = \sin^{-1}\left(\frac{33}{65}\right).

Notice that

sin1(3365)=π2cos1(3365).\sin^{-1}\left(\frac{33}{65}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{33}{65}\right).

Also, since cos1(3365)=sin1(1(3365)2)\cos^{-1}\left(\frac{33}{65}\right)=\sin^{-1}\left(\sqrt{1-\left(\frac{33}{65}\right)^2}\right) and

1(3365)2=110894225=31364225=5665,\sqrt{1-\left(\frac{33}{65}\right)^2}=\sqrt{1-\frac{1089}{4225}}=\sqrt{\frac{3136}{4225}}=\frac{56}{65},

it follows that

cos1(3365)=sin1(5665).\cos^{-1}\left(\frac{33}{65}\right)=\sin^{-1}\left(\frac{56}{65}\right).

Therefore,

AB=π2sin1(5665).A-B = \frac{\pi}{2} - \sin^{-1}\left(\frac{56}{65}\right).

Thus, the correct option is:

Option b) π2sin1(5665)\frac{\pi}{2}-\sin^{-1}\left(\frac{56}{65}\right).