Question
Question: The value of $\sin^{-1}(\frac{12}{13})-\sin^{-1}(\frac{3}{5})$ is equal to...
The value of sin−1(1312)−sin−1(53) is equal to

A
π−sin−1(6563)
B
2π−sin−1(6556)
C
2π−cos−1(659)
D
π−cos−1(6533)
Answer
Option b) 2π−sin−1(6556)
Explanation
Solution
Let
A=sin−1(1312)andB=sin−1(53).Then
sinA=1312,cosA=1−(1312)2=135, sinB=53,cosB=1−(53)2=54.Using the sine difference formula:
sin(A−B)=sinAcosB−cosAsinB=1312⋅54−135⋅53=6548−6515=6533.Since A−B is in the principal range [−2π,2π], we have:
A−B=sin−1(6533).Notice that
sin−1(6533)=2π−cos−1(6533).Also, since cos−1(6533)=sin−1(1−(6533)2) and
1−(6533)2=1−42251089=42253136=6556,it follows that
cos−1(6533)=sin−1(6556).Therefore,
A−B=2π−sin−1(6556).Thus, the correct option is:
Option b) 2π−sin−1(6556).