Solveeit Logo

Question

Question: \[A = \frac{2}{3}\]...

A=23A = \frac{2}{3}

A

x=ωx = \omega

B

2ω=A(1+ω+ω2)+Bω2+(CB)ωC2\omega = A(1 + \omega + \omega^{2}) + B\omega^{2} + (C - B)\omega - C

C

\Rightarrow

D

2ω=A.0+Bω2+(CB)ωC2\omega = A.0 + B\omega^{2} + (C - B)\omega - C

Answer

\Rightarrow

Explanation

Solution

ab=12(1+log23)2ab1=log23ab = \frac{1}{2}(1 + \log_{2}3) \Rightarrow 2ab - 1 = \log_{2}3

\therefore

log32=12ab1\log_{3}2 = \frac{1}{2ab - 1}

log5a.logax=2\log_{5}a.\log_{a}x = 2.