Question
Question: A force \(\overset{\rightarrow}{F =}4\overset{\land}{i} - 5\overset{\land}{j} + 3\overset{\land}{k}\...
A force F=→4i∧−5j∧+3k∧ is acting a pointr1=→i∧+2j∧+3k∧. The torque acting a but a point is:
A
Zero
B
42i∧−30j∧+6k∧
C
42i∧+30j∧+6k∧
D
42i∧+30j∧−6k∧
Answer
42i∧+30j∧−6k∧
Explanation
Solution
Position vector of the point at which force is acting r1→=i+2j+3k
But we have to calculate the torque about another point. So its position vector about that another point
r1′→=6mur1→−r2→=(i+2j+3k)−(3i−2j−3k)=−2i+4j+6k
Now τ→=r1′→×F→=(−2i+4j+6k)×(4i−5j+3k)
\widehat{i} & \widehat{j} & \widehat{k} \\ - 2 & 4 & 6 \\ 4 & - 5 & 3 \end{matrix} \right| = \widehat{i}(12 + 30) - \widehat{j}( - 6 - 24) + \widehat{k}(10 - 16) = (42\widehat{i} + 30\widehat{j} - 6\widehat{k})N ⥂ - ⥂ m$$