Solveeit Logo

Question

Question: A force \[\overrightarrow F = 2xy\hat i + {x^2}\hat j\] acts on a particle moving in the \(x - y\) p...

A force F=2xyi^+x2j^\overrightarrow F = 2xy\hat i + {x^2}\hat j acts on a particle moving in the xyx - y plane. Starting from a point(0,2)\left( {0,2} \right) , the particle is taken along a straight line to (2,4)\left( {2,4} \right) . The work done by the force is
A. 16units16{\text{units}}
B. ZeroZero
C. 8units8{\text{units}}
D. 8units8{\text{units}}

Explanation

Solution

The force is given as a vector term. So use the work-done formula by integrating the dot product of the force vector and the displacement vector.
Find the displacement from the given initial points from where the particle starts its journey to the final points of the plane.
Use the integration limit by taking the points on the x-axis and the y-axis.

Formula used:
Work done, W=F.drW = \int {\overrightarrow F .\overrightarrow {dr} }
F=(Fxi^+Fyj^)\overrightarrow F = ({F_x}\hat i + {F_y}\hat j)
dr=(dxi^+dyj^)\overrightarrow {dr} = (dx\hat i + dy\hat j)
Straight line equation,
yy1xx1=y2y1x2x1\dfrac{{y - {y_1}}}{{x - {x_1}}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}

Complete step by step answer:
The work done is the scalar product of the force vector and the displacement vector or the position vector. This can be represented as, W=F.drW = \int {\overrightarrow F .\overrightarrow {dr} }
Where, F=(Fxi^+Fyj^)\overrightarrow F = ({F_x}\hat i + {F_y}\hat j) and
So, we can write, W=(Fxi^+Fyj^).(dxi^+dyj^)W = \int {({F_x}\hat i + {F_y}\hat j)} .(dx\hat i + dy\hat j)
W=Fxdx+Fydy\Rightarrow W = \int {{F_x}} dx + \int {{F_y}} dy

Given that, F=2xyi^+x2j^\overrightarrow F = 2xy\hat i + {x^2}\hat j
So, Fx=2xy{F_x} = 2xy and Fy=x2{F_y} = {x^2}
W=2xydx+x2dy\Rightarrow W = \int {2xy} dx + \int {{x^2}} dy
Now we have to find the relation between xx and yy from the given points using the straight-line equation, yy1xx1=y2y1x2x1\dfrac{{y - {y_1}}}{{x - {x_1}}} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}

Given, x1=0,x2=2{x_1} = 0,{x_2} = 2 and y1=2,y2=4{y_1} = 2,{y_2} = 4
Putting these values we get,
y2x0=4220\dfrac{{y - 2}}{{x - 0}} = \dfrac{{4 - 2}}{{2 - 0}}
y=x+2\Rightarrow y = x + 2
Use this relation in the integration part we get,
W=2x(x+2)dx+(y2)2dy\Rightarrow W = \int {2x(x + 2)} dx + \int {{{(y - 2)}^2}} dy
Use the initial points and final points in limits,
W=202(x2+2x)dx+24(y24y+4)dy\Rightarrow W = 2\int\limits_0^2 {({x^2} + 2x)dx} + \int\limits_2^4 {({y^2} - 4y + 4)dy}
W=2[x38+x2]02+[y332y2+4y]24\Rightarrow W = 2\left[ {\dfrac{{{x^3}}}{8} + {x^2}} \right]_0^2 + \left[ {\dfrac{{{y^3}}}{3} - 2{y^2} + 4y} \right]_2^4
Putting the limit values we get, W=16W = 16
Thus, the force from which the work is done is 16 unit16{\text{ unit}}.

Hence, the correct answer is option (A).

Additional information:
If in AA is the point of a 3d plane whose coordinate points (x.y,z)(x.y,z) and the main point is OO
Then, the position vector of AA is, r=OA=xi^+yj^+zk^\overrightarrow r = \overrightarrow {OA} = x\hat i + y\hat j + z\hat k
r=x2+y2+z2\therefore r = \sqrt {{x^2} + {y^2} + {z^2}}
If r\overrightarrow r makes the angles α,β,γ\alpha ,\beta ,\gamma with the axis x.y,zx.y,zrespectively, the direction cosine of r\overrightarrow r will be
cosα=xr\cos \alpha = \dfrac{x}{r} , cosβ=yr\cos \beta = \dfrac{y}{r} and cosγ=zr\cos \gamma = \dfrac{z}{r}

Note: The force vector is given by, F=2xyi^+x2j^\overrightarrow F = 2xy\hat i + {x^2}\hat j
We write the force vector as the sum of two components, such as
F=(Fxi^+Fyj^)\overrightarrow F = ({F_x}\hat i + {F_y}\hat j)
Where Fx{F_x} is the component of the force vector along the x-axis and Fy{F_y} is the component along the y-axis.
Here, Fx=2xy{F_x} = 2xy and Fy=x2{F_y} = {x^2}.
The position vector is represented as, dr=(dxi^+dyj^)\overrightarrow {dr} = (dx\hat i + dy\hat j)