Solveeit Logo

Question

Physics Question on torque

A force of Fk^- F \hat{k} acts on OO, the origin of the coordinate system. The torque about the point (1,1)(1,-1) is

A

F(i^j^)F (\hat{i} - \hat{j})

B

F(i^+j^)- F (\hat{i} +\hat{ j})

C

F(i^+j^)F (\hat{i}+\hat{j})

D

F(i^j^)-F(\hat{i}-\hat{j})

Answer

F(i^+j^)F (\hat{i}+\hat{j})

Explanation

Solution

Here, F=Fk^,r=i^j^\vec{F}=-F \,\hat{k}, \vec{r}=\hat{i}-\hat{j} Torque τ=r×F\vec{\tau}=\vec{r}\times\vec{F} τ=i^j^k^ 110 00F\vec{\tau}=\left|\begin{matrix}\hat{i}&\hat{j}&\hat{k}\\\ 1&-1&0\\\ 0&0&-F\end{matrix}\right| τ=i^(F0)j^(F0)+k^(00)\vec{\tau}=\hat{i}\left(F-0\right)-\hat{j}\left(-F-0\right)+\hat{k}\left(0-0\right) =Fi^+Fj^=F\hat{i}+F\hat{j} τ=F(i^+j^)\vec{\tau}=F \left(\hat{i}+\hat{j}\right)