Solveeit Logo

Question

Question: A force of \((2\widehat{i} - 4\widehat{j} + 2\widehat{k})\) N acts at a point \((3\widehat{i} + 2\wi...

A force of (2i^4j^+2k^)(2\widehat{i} - 4\widehat{j} + 2\widehat{k}) N acts at a point (3i^+2j^4k^)(3\widehat{i} + 2\widehat{j} - 4\widehat{k}) metre from the origin. The magnitude of torque is

A

Zero

B

24.4 N-m

C

0.244 N-m

D

2.444 N-m

Answer

24.4 N-m

Explanation

Solution

F=(2i^4j^+2k^)N\overset{\rightarrow}{F} = (2\widehat{i} - 4\widehat{j} + 2\widehat{k})N and r=(3i+24k^)\overset{\rightarrow}{r} = (3i + 2 - 4\widehat{k}) meter

Torque τ=r×F\overset{\rightarrow}{\tau} = \overset{\rightarrow}{r} \times \overset{\rightarrow}{F} =i^j^k^324242= \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & 2 & - 4 \\ 2 & - 4 & 2 \end{matrix} \right|

τ=12i^14j^16k^\overset{\rightarrow}{\tau} = - 12\widehat{i} - 14\widehat{j} - 16\widehat{k}

and τ=(12)2+(14)2+(16)2|\overset{\rightarrow}{\tau}| = \sqrt{( - 12)^{2} + ( - 14)^{2} + ( - 16)^{2}}= 24.4 N-m