Solveeit Logo

Question

Question: A force F is given by \(F = at + bt^{2},\) where \(t\) is time. What are the dimensions of a and b...

A force F is given by F=at+bt2,F = at + bt^{2}, where tt is time. What are the dimensions of a and b

A

MLT3MLT^{- 3}andML2T4ML^{2}T^{- 4}

B

MLT3MLT^{- 3} and MLT4MLT^{- 4}

C

MLT1MLT^{- 1}andMLT0MLT^{0}

D

MLT4MLT^{- 4} and MLT1MLT^{1}

Answer

MLT3MLT^{- 3} and MLT4MLT^{- 4}

Explanation

Solution

From the principle of dimensional homogenity [F]=[at]\lbrack F\rbrack = \lbrack at\rbrack [a]=[Ft]=[MLT2T]=[MLT3]\therefore\lbrack a\rbrack = \left\lbrack \frac{F}{t} \right\rbrack = \left\lbrack \frac{MLT^{- 2}}{T} \right\rbrack = \lbrack MLT^{- 3}\rbrack

Similarly [F]=[bt2]\lbrack F\rbrack = \lbrack bt^{2}\rbrack [b]=[Ft2]=[MLT2T2]=[MLT4]\therefore\lbrack b\rbrack = \left\lbrack \frac{F}{t^{2}} \right\rbrack = \left\lbrack \frac{MLT^{- 2}}{T^{2}} \right\rbrack = \lbrack MLT^{- 4}\rbrack.