Solveeit Logo

Question

Physics Question on Force and Mass

A force defined by F = αt2 + βt acts on a particle at a given time t. The factor which is dimensionless, if α and β are constants, is :

A

βtα\frac{\beta t}{\alpha}

B

αtβ\frac{\alpha t}{\beta}

C

αβt

D

αβt\frac{\alpha\beta}{t}

Answer

αtβ\frac{\alpha t}{\beta}

Explanation

Solution

For αtβ\frac{\alpha t}{\beta} to be dimensionless:
- Dimensions of α\alpha: [F][t]2=MLT2T2=MLT4[F] \cdot [t]^{-2} = \frac{MLT^{-2}}{T^2} = MLT^{-4}.
- Dimensions of β\beta: [F][t]1=MLT2T=MLT3[F] \cdot [t]^{-1} = \frac{MLT^{-2}}{T} = MLT^{-3}.
- αtβ\frac{\alpha t}{\beta} is dimensionless since MLT4TMLT3=1\frac{MLT^{-4} \cdot T}{MLT^{-3}} = 1.