Solveeit Logo

Question

Question: A force applied by an engine of a train of mass \(2.05 \times 10^{6}kg\) changes its velocity from 5...

A force applied by an engine of a train of mass 2.05×106kg2.05 \times 10^{6}kg changes its velocity from 5 m/s to 25 m/s in 5 minutes. The power of the engine is

A

1.025 MW

B

2.05 MW

C

5MW

D

5 MW

Answer

2.05 MW

Explanation

Solution

Power=Work donetime=Increase in kinetic energytime=12m(v22v12)t=12×2.05×106×[25252]5×60=2.05×106watt=2.05MW\text{Power} = \frac{\text{Work done}}{\text{time}} = \frac{\text{Increase in kinetic energy}}{\text{time}} = \frac{\frac{1}{2}m(v_{2}^{2} - v_{1}^{2})}{t} = \frac{\frac{1}{2} \times 2.05 \times 10^{6} \times \lbrack 25^{2} - 5^{2}\rbrack}{5 \times 60} = 2.05 \times 10^{6}watt = 2.05MW